Page 226 - Start Up Mathematics_8 (Non CCE)
P. 226

Solution:       (a)  GUNS is a parallelogram, therefore,
                                        SN = GU and SG = NU                    (Opposite sides of a parallelogram are equal)

                                        fi 3y – 1 = 26 and 3x = 18
                                                          18
                                        fi 3y = 27 and x =     = 6
                                                           3
                                        fi y = 9 cm and x = 6 cm
                                    (b)  RUNS is a parallelogram, therefore,
                                        ON = OR and OS = OU                 (Diagonals of a parallelogram bisect each other)

                                        fi x + y = 16 and y + 7 = 20
                                        fi x + y = 16 and y = 20 – 7 = 13
                                        fi x + 13 = 16  fi x = 16 – 13 = 3
                                        fi x = 3 cm and y = 13 cm
                    Example 12:     In the given figure, FAST and CLUE are parallelograms.
                                    Find the value of x.      (NCERT)              T             E    S            U
                                                                                                  1  2
                    Solution:       In parallelogram CLUE,                           120º
                                    –1 = –L    ( Opposite angles of a                               x
                                                  parallelogram are equal)                           O

                                    fi –1 = 70º
                                                                                                                   70º
                                    In parallelogram FAST,                     F                  A   C                L
                                    TF || SA and TS is the transversal intersecting them, therefore
                                    –2 + –T = 180º     (Interior angles on the same side of the transversal are supplementary)

                                    fi –2 + 120° = 180º
                                    fi –2 = 180° – 120º = 60º
                                    Now in D EOS,
                                    –1 + x + –2 = 180º                                  (Angle-sum property of a triangle)
                                    fi 70º + x + 60º =180º
                                    fi x + 130º = 180º
                                    fi x = 180º – 130º = 50º
                    Example 13:     An angle of a parallelogram is of measure 85°. Find all the angles of the parallelogram.

                    Solution:       Let ABCD be a parallelogram with –A = 85º.
                                    –C = –A                                  (Opposite angles of a parallelogram are equal)
                                    fi –C = 85º                                                 D                      C
                                    Also, AB || DC and AD is the transversal
                                    intersecting them, therefore
                                    –A + –D = 180º      ( Interior angles on the same side of
                                                           the transversal are supplementary)
                                                                                                85º
                                    fi 85º + –D = 180º                                       A                     B
                                    fi –D = 180º – 85º = 95º
                                    Now –B = –D                              (Opposite angles of a parallelogram are equal)

                                    fi –B = 95º
                                    Hence, –A = –C = 85º and –B = –D = 95º
                     218
   221   222   223   224   225   226   227   228   229   230   231