Page 225 - Start Up Mathematics_8 (Non CCE)
P. 225

EF || DG and EG is the transversal intersecting them, therefore,
                                        –FEG = –DGE                       (Alternate interior angles)

                                        fi y = z    fi z = 60º
                                        Therefore, x = 90º, y = z = 60º
                    Example 9:      Can a quadrilateral ABCD be a parallelogram if:
                                    (a)  –D + –B = 180º?
                                                                                                D        9 cm       C
                                    (b)  AB = DC = 9 cm and AD = 5 cm and BC = 5.5 cm?
                    Solution:       (a)  –B + –D = 180º
                                        In a parallelogram, opposite angles are equal.     5 cm
                                                                                                                   5.5 cm
                                        fi –B = –D
                                        Since –B + –D = 180º
                                                                                             A       9 cm        B
                                        fi –B = –D = 90º
                                        The parallelogram is a rectangle.
                                        So, quadrilateral ABCD will be a parallelogram only if it is a rectangle otherwise not.
                                    (b)  AB = DC = 9 cm, AD = 5 cm and BC = 5.5 cm

                                          No,  quadrilateral ABCD  cannot  be  a  parallelogram  with  these  conditions,  because
                                        AD π BC (required condition of a parallelogram is that opposite sides should be equal).

                    Example 10:     In the given figure, ROPE is a parallelogram. Find the measure of angles x, y and z. State the
                                    properties you use to find them.                           E                     P
                                                                                               x                   y
                    Solution:       OP stands on RT therefore,
                                    fi –ROP + –POT = 180º           (Linear pair)

                                    fi –ROP = 180º – 55º = 125º                             35º
                                                                                            z                   55º
                                    In parallelogram ROPE,                             R                      O      T

                                    –E = –ROP                                (Opposite angles of a parallelogram are equal)
                                    fi x = 125º
                                    RE || OP and RP is a transversal intersecting them, therefore,
                                    –OPR = –ERP                                                 (Alternate interior angles)
                                    fi y = 35º
                                    In D ROP
                                    –PRO + –ROP + –OPR = 180º                           (Angle-sum property of a triangle)
                                    fi z + 125º + y = 180º  fi z + 125º + 35º = 180º
                                    fi z + 160º = 180º  fi z = 180º – 160º = 20º
                                    Therefore, x = 125º, y = 35º and z = 20º

                    Example 11:     In the given figures, GUNS and RUNS are parallelograms. Find x and y (lengths are in cm).
                                                                                      S                          (NCERT)
                                      (a)     S          26          N        (b)                            N
                                                                                                    x  + y
                                                                                              20
                                          3x
                                                                  18                         16   O     y  + 7


                                        G                       U                        R                      U
                                                  3y – 1
                                                                                                                    217
   220   221   222   223   224   225   226   227   228   229   230