Page 224 - Start Up Mathematics_8 (Non CCE)
P. 224

Rhombus                                                                               P
                    A rhombus is a quadrilateral having all sides equal. Hence a parallelogram
                    in which two adjacent sides are equal is a rhombus.
                    In parallelogram PQRS (Fig. 14.22), PQ = PS or QR = SR.                   S                       Q
                    So, PQRS is a rhombus.                                                                 O


                    Properties of a rhombus
                    (a)  All sides are of equal length (PQ = QR = RS = SP).                               R
                    (b)  Opposite angles are of equal measure (–P = –R and –Q = –S).                   Fig. 14.22
                    (c)  The sum of adjacent angles is 180º (–P + –Q = 180º, –Q + –R = 180º, –R + –S = 180º and
                        –S + –P = 180º).
                    (d)  The diagonals bisect each other at right angles (Diagonals PR and SQ bisect each other at point O, so
                        OP = OR and OQ = OS, also PR ^ SQ at point O).
                    Example 8:      Consider the following parallelograms. Find the value of the unknown x, y, z.   (NCERT)

                                                                                             E
                                 S          R
                                     50°  y                                                    y

                                                                                               x    30°
                                                                                D             O           F


                                         x        z                                        z
                                       P        Q       T                                     G
                                             (a)                                           (b)
                    Solution:       (a)  In parallelogram PQRS,

                                        –S = –PQR                            (Opposite angles of a parallelogram are equal)
                                        fi –PQR = 50º
                                        Ray QR stands on PT, therefore
                                        –PQR + –RQT = 180º                                                   (Linear pair)
                                        fi 50º + z = 180º   fi z = 180º – 50º = 130º

                                        Also PQ || SR and SP is the transversal intersecting them, therefore,
                                        –P + –S = 180º     (Interior angles on the same side of transversal are supplementary)
                                        fi x + 50º = 180º  fi x = 180º – 50º = 130º
                                        Again, –R = –P                       (Opposite angles of a parallelogram are equal)

                                        fi  y = x  fi y = 130º
                                        Therefore, x = y = z = 130º
                                    (b)  In parallelogram DEFG, diagonals DF and EG intersect at point O.
                                        –GOD = 90º
                                        –FOE = –GOD  fi x = 90°                                 (Vertically opposite angles)

                                        In D FOE
                                            x + y + –EFO =  180º                        (Angle-sum property of a triangle)
                                        fi 90º + y + 30º = 180º   fi y + 120º = 180º

                                        fi y = 80º – 120º = 60º
                     216
   219   220   221   222   223   224   225   226   227   228   229