Page 24 - ICSE Math 8
P. 24

1
                                         3   − 1   3  5   { 3×−()      35×    3      15         2   12,  24
                                                                                       − 
                                 RHS =    ×     +   ×   =         }         =      +    
                                                                         +
                                                                              ×
                                         4   3    4  6      43×        46     12     24        2   6,  12
                                                                                                           3   3,  6
                                                                                   615
                                                                2 ×−(  3 +×)  115  −+       9   3          2   1,  2
                                                              =                 =        =    =
                                                                      24            24     24   8              1,  1
                                    ∴ LHS = RHS                                                               LCM = 24

                                                              EXERCISE 1.6


                      1.  Verify a × b = b × a.
                                 11      −7              −3      −12                       8                17
                         (a)  a =  ,  b =       (b)  a =   ,  b =         (c)  a =−9,  b =         (d)  a =   ,  b = 0
                                15       6               4        5                       27                23
                      2.  Verify a × (b × c) = (a × b) × c.

                                 6      −9      1                          3      −7                27            −5
                         (a)  a = ,  b =  ,  c =           (b)  a =−5,  b = ,  c =          (c)  a =   ,  b = 0,  c =
                                 7      4       2                          2      20                43             6
                      3.  Verify a × (b + c) = (a × b) + (a × c).

                                 5      −4      −7                  −7      6     13                −1      4      −2
                         (a)  a = ,  b =  ,  c =           (b)  a =   ,  b = ,  c =         (c)  a =   ,  b = ,  c =
                                 6      5       10                  3       5     12                2       3      7
                      4.  Using distributive property of multiplication of rational numbers over addition/subtraction, simplify the
                        following.

                             −15    3  12          2   − 3  4              6    2   6            −2    −4  11 
                         (a)     ×   +        (b)    ×    −           (c)    ×   +          (d)     ×    −   
                              4     7   5          5   8    5              11  3   − 7           3    7    9  

                      5.  Find the multiplicative inverse (or reciprocal) of the following.

                                  7            −21            4   − 2            75            −30
                         (a)  −×3      (b)             (c)     ×         (d)            (e)            (f)  –1
                                  4            38             5    3            − 63           −19
                      6.  Fill in the missing rational numbers. Also state the property used.

                             3    − 4  8    3  _____   8         28   − 17     − 17   ______
                         (a)   ×     ×       ×         ×    (b)     ×      =        ×
                                           =
                             7     5   9    7          9         31    19      19 
                             135    _______    − 135                 −8    2   7     −8  2    −8  _______ 
                                                                                   =
                         (c)      ×          =                  (d)     ×    +        ×    +    ×         
                             − 56               56                   11    5  12   11   5    11           
                             46   _______                            −19 _______
                         (e)    ×         =  0                  (f)      ×         =1
                             63                                      25
                    Division of Rational Numbers
                                                                                               Maths Info
                    “To divide one rational number by another, multiply the first rational
                    number by the multiplicative inverse (reciprocal) of the second   •   Divisibility of a rational number by zero
                                                                                                      p
                    rational number.”                                                 is not defined, i.e.,   ÷ 0 does not exist.
                                                                                                      q
                           p       r                                                •   ‘Zero’ divided by any rational number is
                    So, if   q   and   s   are  two non-zero  rational numbers, then                   p
                                                                                                       q
                    p   r     p                 r     p    r                          always zero, i.e., 0 ÷   = 0.
                                                s
                    q  ÷  s  =  q  × (reciprocal of  ) =   q   ×  .
                                                           s
                 12
   19   20   21   22   23   24   25   26   27   28   29