Page 19 - ICSE Math 8
P. 19

−4   −×43    −12
                                  LCM of 3 and 1 is 3. Thus,    =       =
                                                             1     13       3
                                                                    ×
                                                                                       (
                                           5                     5     −12    ( −5)  − −12)  −+512   7
                                           − 
                                                                  −  
                                                                      −
                                  So,  x =     −−4(  )   ⇒  x =           =            =        =
                                           3                    3    3          3           3     3
                                                              7
                                  The other rational number is  .
                                                              3
                                                              EXERCISE 1.3

                      1.  Subtract.
                             −3       5             −4       5              4      2
                         (a)    from           (b)     from            (c)    from
                              8      −7             21      14              5      3
                      2.  Evaluate.
                             15   6                       2                   9    − 6              1   5
                                                                                  −
                         (a)    −              (b)  (−  ) −4           (c)                     (d)    −
                             11   7                       7                  − 10    15             8   24
                    Properties of Subtraction of Rational Numbers
                                                                                                                   p
                    I. Closure Property: “The difference of two rational numbers is always a rational number.” Thus, if   and
                                                                                                                   q
                    r                              p   r
                    s  are two rational numbers, then  q  −  is also a rational number.
                                                       s
                                           3    − 8             7   1
                    Example 12:  Find: (a)   −           (b)      −
                                           7     5              2   2
                    Solution:     (a)  3  − 8  = 15 −−(  56)  =  15 56+  =  71  , which is a rational number.
                                        −
                                              
                                          
                                       7   5       35         35     35
                                       7  1   71−    6      3
                                  (b)   −   =      =   = 3 =  , which is a rational number.
                                       2  2    2     2      1
                    Thus, rational numbers are closed under subtraction.
                                                                                                             p
                    II. Commutative Property: “In subtraction, the order of numbers cannot be changed.” Thus, if   q  and  r   are
                                                                                                                   s
                                             p   r   r   p
                    two rational numbers, then  q  −  ≠  −  q .
                                                 s
                                                     s
                                             2   5   5  2               1    − 5   − 5   1
                    Example 13:  Find if: (a)  −   =  −        (b)        −           −
                                                                                 =
                                             3   4   4  3               3    6    6   3
                                      2   5   815−    − 7    5   2   15 8−   7
                    Solution:     (a)   −   =       =    and   −   =       =
                                      3   4    12     12     4   3    12     12
                                          2   5   5   2
                                      So,   −−   ≠   −−                                                (Not commutative)
                                          3   4   4   3
                                                                          − 
                                   (b)   1  −  − 5    =  2 −− (  5)  =  25+  =  7   and   5  −  1  =  −−52  =  −7
                                                                         
                                          
                                      3     6     6        6    6       6    3     6     6
                                          1    − 5    5   1
                                                       − 
                                      So,   −      ≠     −                                         (Not commutative)
                                          3    6     6    3
                    Thus, commutative property does not hold true for subtraction of rational numbers.
                                                                                                            p r        u
                    III. Associative Property: “The order of the three numbers cannot be changed in subtraction.” So, if  ,  and  v
                                                                                                            q s
                                                    p  r   u   p    r   u 
                    are three rational numbers, then    q  −  s   −   ≠   q  −   s  −   .
                                                          v            v  

                                                                                                                         7
   14   15   16   17   18   19   20   21   22   23   24