Page 16 - ICSE Math 8
P. 16

EXERCISE 1.1

                                 3     6                  7      11                 −2     23
                      1.  Add: (a)   and        (b)          and           (c)         and
                                 7     7                −  25    −  25              16     16
                      2.  Simplify.
                              1   3                     −5   4                     2                             4
                        (a)     +                  (b)     +                  (c)    + − (  4)         (d)  −+7
                             − 3  4                     7    −5                    3                            13
                             13                          4     3
                        (e)     + 6                (f)      +
                             − 8                        − 15  − 25
                      3.  Find the following sums and express your answer as mixed fraction.
                             27                         25    − 11               18   62                  9    − (  46)
                        (a)     + 15               (b)     +                (c)     +                (d)     +
                             20                         4     4                  − 5   4                 10      5

                    Properties of Addition of Rational Numbers
                                                                                                             p     r
                    I. Closure Property: “The sum of two rational numbers is always a rational number.” Thus, if   q   and  are
                                                                                                                    s
                                               p  r 
                    two rational numbers, then     q  +  s     is also a rational number.

                    Example 4:    Show that the sum of the following rational numbers is again a rational number.
                                       2   3                ()−1   (−2 )
                                  (a)    +              (b)      +
                                       7   5                  2     3
                                       2   3  10 +  21  31
                    Solution:     (a)    +  =         =     is a rational number.
                                       7   5     35     35
                                       ()−1  (−2 )  (−3 ) +  (−4 )  −7
                                  (b)      +      =            =     is a rational number.
                                        2      3         6        6
                    Thus, rational numbers are closed under addition.
                                                                                                       p      r
                    II. Commutative Property: “Two rational numbers can be added in any order.” Thus, if   q   and  (q, s ≠ 0)
                                                                                                              s
                                                 p   r   r   p
                    are two rational numbers, then   +  =  +  .
                                                 q   s   s   q
                                            (−6 )  (−8 )  (−8 )  (−6 )
                    Example 5:    Show that      +      =      +     .
                                              5      3     3      5
                                   (−6 )  (−8 )  (−18 ) (+ −40 )  −58  (−8 ) (−6 )  (−40 ) (+ −18 )  −58
                    Solution:          +      =              =     and      +     =              =
                                    5     3          15        15        3     5         155        15
                                      (6)−−  (8)−−   −− (  8)  (6)−−
                                  So,      ++     ==     ++
                                        5     3      3      5
                    Thus, addition is commutative for rational numbers.
                                                                                                     p r      u
                    III. Associative Property: “Three rational numbers can be added in any order.” Thus, if   q s  v
                                                                                                       ,   and   are three
                                           p  r  u    p    r   u
                    rational numbers, then     q  +  s   +  v  =  q  +     s  +  v    .
                                                
                                                                           
                                                    3
                                                                          3
                                                          − 
                                                                                − 
                    Example 6:    Show that   −  1   +   +   4  =      −  1   +  +  4  .
                                                         
                                            
                                                                               
                                             2     7   3      2    7    3  
                                                                   (
                                                               9
                                          3
                                                −   1
                                                                          =
                    Solution:      −  1   +   +  4  =   −    +   +−28)     −1   +     −19    =  ( −21)  + −38(  )  =  −−59
                                               
                                  
                                   2     7   3    2       21       2    21         42         42
                                                                   6
                                          −  1  3    4  ( −7)  +    4    −1   4     ( −3)  + −56(  )  −59
                                                                                        − 
                                                     − 
                                                                         −  
                                                                             =
                                  and     +  +       =        +          +     =            =
                                         2    7    3      14     3    14    3        42        42
                  4
   11   12   13   14   15   16   17   18   19   20   21