Page 20 - ICSE Math 8
P. 20

 2    − 4   1  2     − 4   1
                    Example 14:  Check if     −     −  =   −     −  .
                                             3    5   2  3       5   2 

                                          2   − 4   1   { 10 −− (  12) }  1  { 10 12+  }  1  22  1  44 15−  29
                    Solution:     LHS =     −    −    =             −   =          −   =    −   =         =
                                          3    5   2        15        2      15      2   15   2      30     30

                                          2      − 4   1  2  { }      2   − 13   20 −−(  39)  20 39+   59
                                                                 −−
                                                                  85
                                  RHS =    −       −  =   −         =   −       =          =         =
                                          3      5   2   3    10      3    10        30        30      30
                                       2    − 4   1  2       − 4   1
                                  So,    −    −    ≠   −     −                                   (Not associative)
                                       3    5   2    3       5   2 
                    Thus, Associative property does not hold true for subtraction of rational numbers.

                    IV. Existence of Right Identity: The Role of ‘Zero’
                                            p           p        p          p   –p               p
                    For any rational number   , we have    – 0 =    but 0 –    =    (not equal to   ). Therefore, only right
                                            q           q        q          q    q               q
                    identity exists for subtraction of rational numbers.
                                             7          7                     −2           2
                                                                                           − 
                                                                                       0
                    Example 15:  Find if: (a)   −=  0 −                  (b)     − 0  = −    
                                                 0
                                             3          3                     5            5  
                                       7      7        7     7                −2         2         2     02     2
                                                                                                           +
                                                                                                   − 
                    Solution:     (a)    −=     and  0 −  = −            (b)     − 0  = −  and  0  −      =  =
                                          0
                                       3      3        3     3                5          5         5     5     5
                                          7           7                          −2             − 2 
                                      So,   − 0  ≠  0 −                      So,     − 0  ≠  0 −    
                                          3           3                           5             5 
                    Addition and Subtraction of Two or More Rational Numbers

                    Follow the given steps to add or subtract two or more rational numbers.
                    Step 1:  Find the LCM of the denominators of all the rational numbers. Make the LCM the common denominator
                            of the resulting answer.
                    Step 2:  Taking one rational number at a time, divide the LCM by the denominator of the first rational number.
                            Multiply the quotient so obtained with the numerator of the first rational number. Retain the signs.
                    Step 3:  Repeat step 2 for every rational number.

                    Step 4:  Simplify by taking the appropriate signs among all the products. This is the numerator of the resulting
                            answer.
                    Step 5:  Arrange the numerator and denominator of the result in the rational number form.
                    Step 6:  Reduce the result to its lowest form, if required.


                    In case the denominator of any rational number is negative, first make it positive.

                                       3   − 6   8   − 5 
                    Example 16:  Find    +     +   +     .
                                       7     11    21   22 
                                                                                                      7  7,  11,  21,  22
                    Solution:     LCM of 7, 11, 21, 22 = 7 × 11 × 3 × 2 = 462                         11  1,  11,  3,  22
                                     3   − 6   8    − 5 
                                  ∴    +     +   +                                                   1,  1,  3,  2
                                     7     11    21    22 


                  8
   15   16   17   18   19   20   21   22   23   24   25