Page 151 - ICSE Math 8
P. 151

Ê 1ˆ    Ê 1ˆ  2
                                                                                                       2
                                          2
                                                                                                                      2
                                                                                                            2
                                      fi x  + 2(x) Á ˜  +  Á ˜   = 4                      {Using (a + b)  = a  + 2ab + b }
                                                 Ë  x¯   Ë  x¯
                                                  1                1
                                          2
                                                               2
                                      fi x  + 2 +     = 4  fi x  +    = 4 – 2 = 2              (Transposing 2 to the RHS)
                                                  x 2              x 2
                                            1
                                       2
                                  (b)  x  +    = 2                                                        {From part (a)}
                                           x 2
                                         Ê      1 ˆ 2
                                                         2
                                            2
                                      fi  x +  x ¯  =  2 ()                                          (Squaring both sides)
                                                2 ˜
                                         Á
                                         Ë
                                                   2 Ê
                                                       1 ˆ Ê
                                                             1 ˆ
                                           2 2
                                                                                                                      2
                                                                                                            2
                                                                                                       2
                                                          +
                                      fi (x )  + 2(x ) Á  x ¯ Ë  x ¯  2   = 4             {Using (a + b)  = a  + 2ab + b }
                                                              2 ˜
                                                       2 ˜ Á
                                                     Ë
                                           4
                                                               4
                                      fi  x  + 2 +   1   = 4  fi x  +   1   = 4 – 2 = 2        (Transposing 2 to the RHS)
                                                   x 4             x 4
                                        1               1                          1
                                                    2
                    Example 3:    If x +  = 4  and  x +   = 10,  find the value of x –  .
                                         x             x 2                          x
                                      1
                    Solution:     x +    = 4
                                      x
                                                             1
                                  Ê     ˆ 1  2        Ê  1ˆ Ê ˆ 2            1
                                              2
                                                                                                                      2
                                                                     2
                                                                                                       2
                                                                                                            2
                                                          +
                                  Á x +  x¯ ˜   = x  + 2(x)  Á ˜ Á ˜   = x  + 2 +   x 2    ...(1)   {Using (a + b)  = a  + 2ab + b }
                                  Ë
                                                      Ë
                                                        x¯ Ë ¯
                                                              x
                                                                 1
                                      Ê     ˆ 1  2       Ê  1ˆ Ê ˆ 2            1
                                                                                                        2
                                                                                                            2
                                                  2
                                                                        2
                                                                                                                      2
                                                              +
                                  and x -  x¯   = x  – 2(x) Á ˜ Á ˜   = x  – 2 +   x 2    …(2) {Using (a – b)  = a  – 2ab + b }
                                            ˜
                                      Á
                                                         Ë
                                                           x¯ Ë ¯
                                      Ë
                                                                 x
                                  Adding (1) and (2), we get
                                  Ê     ˆ 1  2  Ê  ˆ 1  2      1            1          2      Ê     1 ˆ
                                                                     2
                                                        2
                                                                                                2
                                                                                   2
                                  Á x +  x¯ ˜  + Á x -  x¯  =  x + +2  x 2  +  x -+2  x 2   = 2x +   x 2   =  2 x +  x ¯
                                                                                              Á
                                                   ˜
                                                                                                     2 ˜
                                             Ë
                                  Ë
                                                                                              Ë
                                                          1           1
                                                                  2
                                  Putting the values of x +    and x  +   , we get
                                                          x           x 2                       Maths Info
                                                2
                                        Ê
                                     2
                                  (4)  +  x -  x¯ ˆ 1 ˜   = 2 ¥ 10                    Some common mistakes:
                                        Á
                                        Ë
                                           Ê     ˆ 1  2                               1.  ax is misinterpreted as (a + x). ax means
                                                                                        (a × x) not (a + x).
                                  fi  16 +  x -  x¯ ˜   = 20                          2.   Wrong application of distributive
                                           Á
                                           Ë
                                                                                        property:
                                  Ê     ˆ 1  2                                           a(b + c) = (a × b) + (a × c) not ab + c
                                  Á x -  x¯ ˜   = 20 – 16 = 4 = (2) 2                 3.  (a )  = a , not a m + n
                                  Ë
                                                                                               mn
                                                                                          m n
                                                                                                m m
                                                                                           m
                                          1                                           4.  (ab)  = a b , not ab m
                                  fi  x –    = ± 2
                                          x
                                                                                   2
                                                                             2
                    Example 4:    If 2x + 3y = 10 and xy = 5, find the value of 4x  + 9y .
                    Solution:     2x + 3y = 10
                                               2
                                                      2
                                  fi  (2x + 3y)  = (10)                                              (Squaring both sides)
                                                                                                       2
                                                            2
                                          2
                                                                                                                      2
                                                                                                            2
                                  fi  (2x)  + 2(2x)(3y) + (3y)  = 100                     {Using (a + b)  = a  + 2ab + b }
                                                                    2
                                                                         2
                                        2
                                                     2
                                  fi  4x  + 12xy + 9y  = 100  fi (4x  + 9y ) + 12xy = 100
                                         2
                                                                     2
                                                                           2
                                               2
                                  fi  (4x  + 9y ) + 12(5) = 100  fi 4x  + 9y  + 60 = 100          (Putting the value of xy)
                                        2
                                              2
                                  fi  4x  + 9y  = 100 – 60 = 40
                                                                                                                        139
   146   147   148   149   150   151   152   153   154   155   156