Page 150 - ICSE Math 8
P. 150

2
                                                                 2
                                                        2
                                  Area of (II) = (b)  = (4)  = 16 cm , Area of (IV) = (a – b) ¥ b = 6 ¥ 4 = 24 cm 2
                                                                                              2
                                                                                                   2
                                                                                                            2
                                                2
                                                                  2
                                                                                    2
                                  RHS of (1) = a  – {(a – b) ¥ b + b  + (a – b) ¥ b} = a  – {ab – b  + b  + ab – b }
                                                           2
                                                2
                                                                2
                                             = a  – (2ab – b ) = a  – 2ab + b 2
                                  Area of (RUSK) = 100 – (24 + 16 + 24) = 100 – 64 = 36 cm 2
                                                       2
                                             2
                                  \ RHS = a  – 2ab + b  = 36 cm 2
                                  \ LHS = RHS
                                            2
                                                 2
                                                           2
                    Hence, the identity (a – b)  = a  – 2ab + b  is verified.
                     Paste along IT, TN, ON, OG and GK. Do not paste other portions of II, III and IV.

                                                2
                    Identity 3: (a + b) (a – b) = a  – b 2
                    In other words,
                                                                                    2
                    (Sum of the two terms) ¥ (Difference of the two terms) = (First term)  – (Second term) 2
                    Proof:   (a + b)(a – b) = a(a – b) + b(a – b)     (Distributive property of multiplication over addition)
                                                          2
                                            2
                                         = a  – ab + ab – b                               (Commutative property ab = ba)
                                            2
                                         = a  – b 2
                                                    2
                                 \  (a + b)(a – b) = a  – b 2

                    Example 1:    Find the following squares by using the identities:
                                                                                                -6
                                                                                                           Ê
                                                                                       2
                                              2
                                                                n
                                  (a)  (6x – 5y)     (b)   Ê 2 m +  3 ˆ 2    (c)  (0.4p – 0.5q)     (d)  Á Ê Ë 7  p 3  + q 3 ˆ -6  p 3  - q 3 ˆ ˜ ¯
                                                                                                          ˜ Á
                                                                 ˜
                                                       Á
                                                                                                          ¯ Ë 7
                                                       Ë
                                                              2 ¯
                                                        3
                                              2
                                                                                                                      2
                                                                                                        2
                                                                        2
                                                                                                            2
                                                      2
                    Solution:     (a)  (6x – 5y)  = (6x)  – 2(6x)(5y) + (5y)              {Using (a – b)  = a  – 2ab + b }
                                                      2
                                                 = 36x  – 60xy + 25y 2
                                      Ê 2     3 ˆ 2  Ê  2 ˆ  2  Ê 2 ˆ Ê 3 ˆ   Ê 3 ˆ 2
                                                                                                       2
                                                                                                                      2
                                                                                                            2
                                                                                n
                                               n
                                                                         n +
                                  (b)   Á 3 m +  2 ¯  =  Á Ë  3 ¯ ˜  + 2 Á 3 ¯ Ë 2 ¯  Á Ë  2 ¯     {Using (a + b)  = a  + 2ab + b }
                                                        m
                                                                   m
                                                                    ˜ Á
                                                                                  ˜
                                                                          ˜
                                                 ˜
                                      Ë
                                                                Ë
                                                      4             9
                                                         2
                                                   =  m  + 2mn +  n    2
                                                      9             4
                                                  2
                                                                                                        2
                                                           2
                                                                                                            2
                                                                                   2
                                                                                                                      2
                                  (c)  (0.4p – 0.5q)  = (0.4p)  – 2(0.4p)(0.5q) + (0.5q)    {Using (a – b)  = a  – 2ab + b }
                                                           2
                                                    = 0.16p  – 0.4pq + 0.25q 2
                                         Ê -6       ˆ -6         ˆ   Ê -6   ˆ  2
                                                      Ê
                                                                                                                  2
                                                                                                                      2
                                                                                  3 2
                                  (d)    Á    p 3  + q 3 ˜ Á  p 3  - q 3 ˜  =  Á  p 3 ˜   – (q )    {Using (a + b)(a – b) = a – b }
                                                                 ¯
                                                                            ¯
                                                    ¯ Ë 7
                                         Ë 7
                                                                     Ë 7
                                                                     36   6   6
                                                                   =  49  p −− q
                                        1                                1                 1
                                                                                       4
                                                                     2
                    Example 2:    If x +    = 2, find the values of: (a) x  +       (b) x  +
                                        x                                x 2               x 4
                                          1          Ê     ˆ 1  2
                                                                 2
                    Solution:     (a)  x +    = 2  fi  x +  ˜  = 2                                   (Squaring both sides)
                                                     Á
                                          x          Ë    x¯
                138
   145   146   147   148   149   150   151   152   153   154   155