Page 154 - ICSE Math 8
P. 154

(x + a)(x + b) = x(x + b) + a(x + b)          (Distributive property of multiplication over addition)
                                        2
                                                          2
                                     = x  + xb + ax + ab = x  + bx + ax + ab              (Commutative property xb = bx)
                                        2
                                     = x  + ax + bx + ab                                            ( bx + ax = ax + bx)
                                        2
                                     = x  + (a + b)x + ab                                 (Taking x common from ax + bx)

                                                                2
                    So, you have the identity:  \  (x + a)(x + b) = x  + (a + b)x + ab
                                                                                               Maths Info
                    This identity can be used for the following three identities:
                                          2
                      (i)  (x + a)(x – b) = x  + (a – b)x – ab                     Some more special products.  3
                                                                                           3
                                                                                               3
                                                                                   1.  (a + b)  = a  + 3ab(a + b) + b
                                          2
                      (ii)  (x – a)(x + b) = x  + (b – a)x – ab                    2.  (a – b)  = a  – 3ab(a – b) – b 3
                                                                                              3
                                                                                           3
                                                                                                     2
                                                                                                         2
                                                                                              2
                                                                                                 2
                                          2
                      (iii)  (x – a)(x – b) = x  – (a + b)x + ab                   3.  (a + b + c)  = a  + b  + c  + 2(ab + ac + bc)
                    All these identities are very helpful in simplifying and evaluating algebraic expressions.
                    Example 10:  Find the products: (a) (x + 4)(x + 5)    (b) (4x – 3)(4x + 5)
                    Solution:     (a)  (x + 4)(x + 5)
                                           2
                                                                                                        2
                                      = (x)  + (4 + 5)x + 4 ¥ 5                 {Using (x + a)(x + b) = x  + (a + b)x + ab}
                                         2
                                      = x  + 9x + 20
                                  (b)  (4x – 3)(4x + 5)
                                      \ (4x – 3)(4x + 5) = (y – 3)(y + 5)                                 (Putting 4x = y)
                                                   2
                                                                                                        2
                                                = y  + (–3 + 5)y + (–3) ¥ 5     {Using (x + a)(x + b) = x  + (a + b)x + ab}
                                                                   2
                                                   2
                                                = y  + 2y – 15 = (4x)  + 2(4x) – 15                       (Putting y = 4x)
                                                     2
                                                = 16x  + 8x – 15
                                                                             2
                    Example 11:  Evaluate the following using (x + a)(x + b) = x  + (a + b)x + ab:
                                  (a) 104 ¥ 101     (b) 54 ¥ 47     (c) 96 ¥ 99
                    Solution:     (a)  104 ¥ 101 = (100 + 4) ¥ (100 + 1)                      (Here, x = 100, a = 4, b = 1)
                                                       2
                                                = (100)  + (4 + 1)100 + (4 ¥ 1)
                                                = 10,000 + 500 + 4 = 10,504
                                  (b)  54 ¥ 47 = (50 + 4) ¥ (50 – 3)                          (Here, x = 50, a = 4, b = –3)
                                                    2
                                              = (50)  + {4 + (–3)}50 + 4 ¥ (–3)
                                              = 2,500 + (1)(50) – 12 = 2,500 + 50 – 12 = 2,538
                                  (c)  96 ¥ 99 = (100 – 4) ¥ (100 – 1)                      (Here, x = 100, a = –4, b = –1)
                                                     2
                                              = (100)  + {(–4) + (–1)}100 + (–4) ¥ (–1)
                                              = 10,000 + (–5)100 + 4 = 10,000 – 500 + 4 = 9,504


                                                             EXERCISE 13.2

                      1.  Find the following products:
                         (a)  (x + 2)(x + 6)      (b)  (x + 3)(x – 4)   (c)  (x – 7)(x – 5)        (d)  (4x + 7)(4x – 3)
                             Ê 3    ˆ Ê  3   ˆ        Ê    2 ˆ Ê   ˆ 5                                 Ê    1ˆ Ê     3ˆ
                                                                                          2
                                                                                                         2
                                                                                                                 2
                                                                                2
                         (e)   Á 4  y - 2 ˜ Á  4  y +  4   (f)   Á x +  5 ˜ Á x +  ˜ ¯ 2     (g)  (7x  – 6xy)(7x  – 3xy)  (h)   Á l -  2¯ Ë l +  4¯ ˜
                                             ˜
                                                                                                              ˜ Á
                                                                                                       Ë
                                             ¯
                                    ¯ Ë
                                                            ¯ Ë
                                                      Ë
                             Ë
                                                                               2
                      2.  Evaluate the following using the identity (x + a)(x + b) = x  + (a + b)x + ab.
                         (a)  103 ¥ 105        (b)  108 ¥ 106          (c)  97 ¥ 96            (d)  102 ¥ 95
                         (e)  59 ¥ 48          (f)  28 ¥ 33            (g)  995 ¥ 1,004        (h)  45 ¥ 47
                142
   149   150   151   152   153   154   155   156   157   158   159