Page 13 - Start Up Mathematics_8 (Non CCE)
P. 13

p r      u                                  p  r  u   p    r   u
                    So, if  ,   and   are three rational numbers, then    q  +  s   +  v  =  q  +     s  +  v  
                          q s
                                   v
                                                                          
                                                                    
                                                    3
                                                                          3
                                                                           
                                                          − 
                                                                                − 
                    Example 8:    Show that   −  1  +   +   4  =      −  1   +  +  4             (NCERT)
                                                                               
                                                         
                                            
                                                                          7
                                             2     7   3      2       3  
                                          3
                                                               9
                                                −   1
                    Solution:      −  1   +   +  4  =   −    +   +−28(   )  =      −1   +     −19    =  ( −21)  + −38(  )  =  −59
                                               
                                  
                                   2     7   3    2       21       2    21         42         42
                                          −  1  3    4  ( −7)  +    4    −1   4     ( −3)  + −56(  )  −59
                                                                   6
                                                     − 
                                                                                        − 
                                                                         −  
                                                                             =
                                  and     +  +       =        +          +     =            =
                                         2    7    3      14     3    14    3        42        42
                                             3
                                                    − 
                                                                     
                                                                    3
                                                                          − 
                                  So,     −  1   +   +  4  =     −  1  +  +   4 
                                                                        
                                                  
                                       2     7   3      2    7    3  
                    IV. Existence of Additive Identity: The Role of ‘Zero’
                    “The sum of any rational number and 0 is the rational number itself.”
                           p                              p      p       p
                    So, if    is any rational number, then   +=    =+     , where 0 is called the additive identity for the
                                                             0
                                                                     0
                          q                              q       q       q
                    rational number   p  .
                                    q
                                           3                             −14 
                    Example 9:    Find: (a)   +  0                  (b)       + 0
                                           8                            9   
                                      3      3      3                    −14       −14       −14 
                                                                                           0
                                                                                0
                    Solution:     (a)  +=      =+                   (b)      +=        =+      
                                         0
                                                0
                                      8      8      8                   9         9         9  
                    V. Existence of Additive Inverse                                           Remember
                       p                                                        − p
                    If   q   is any rational number, then there exists a rational number   q   such that  To find the additive inverse
                    p     − p      − p  p        − p                                p     of  any  rational  number,
                                                                                              change its sign.
                                0
                    q  +     q    ==    q    +  q   where   q   is called the additive inverse of   q  .
                                   
                                                                 −6            2            2
                    Example 10:  Find the additive inverse of: (a)       (b)         (c)                         (NCERT)
                                                                 −5           − 9           8
                                                             −6      6    −6
                                                                     − 
                    Solution:     (a)  The additive inverse of   =−      =
                                                             −5      5     5
                                                                     − 
                                                            2       2       − 2   2                           2  − 2
                                  (b)  The additive inverse of   =−     =−     =    (c)  The additive inverse of  =
                                                            − 9     − 9     9   9                             8   8
                      EXERCISE 1.2
                       1.  Verify the commutative property of addition for the following rational numbers:
                              5      7                   −2     1                   2      3                 −4     10
                          (a)   and                 (b)     and                 (c)   and               (d)     and
                              8     − 12                 −3     5                   5     10                 14     21
                       2.  Verify that (a + b) + c = a + (b + c) where
                                  −1     3     5            2     −3     7               7      −2      −3
                          (a)  a =  , b = ,  c =    (b)  a = ,  b =  , c =     (c)  a =     , b =  ,  c =
                                  2      4     7            3      4      5             −11      5      22
                                                                                                                     5
   8   9   10   11   12   13   14   15   16   17   18