Page 118 - Start Up Mathematics_8 (Non CCE)
P. 118

Example 3:      Divide:

                                                           2 2 3
                                                   2 3 2
                                           3 2 2
                                                                     2 2 2
                                    (a)  8(x y z  + x y z  + x y z ) by 4x y z                                   (NCERT)
                                                                                                  1
                                                                                        3
                                                                                            2
                                                                                   4
                                                   3 4
                                            2
                                                               2
                                    (b)  (9ab  – 15a b ) by (–3ab )      (c) (2x  + 3x  – x ) by  x
                                                                                                  3
                                                                          2 2
                                                               2 3
                                                             2
                                                      3 2
                                           3  2  2
                                                    2
                                                                        2
                    Solution:       (a)  8(x y z  + x  y  z  + x  y  z ) ÷ 4x  y  z
                                                           3
                                                             2 2
                                                                      32
                                                                               2 3
                                                        8(xy z +  x yz +    xy z  )
                                                                             2
                                                                   2
                                                     =
                                                                      2 2
                                                                    2
                                                                 4xy z
                                                                        32
                                                                      2
                                                                              2
                                                              3
                                                        8 Ê xy z   + x yz   + xy z  ˆ    Ê  xy z   xy z     xy z ˆ
                                                                2 2
                                                                                 2 3
                                                                                                       3 2
                                                                                             2 2
                                                                                                                2 3
                                                                                                    2
                                                                                           3
                                                                                                              2
                                                     =   ¥ Á                        ˜  =  2 Á    +        +     2 2 ˜
                                                                                           2
                                                                                             2 2
                                                                        2 2
                                                                                                              2
                                                                      2
                                                                                                    2
                                                                                                       22
                                                        4 Ë          xy z           ¯    Ë  xy z   x yyz    xy z ¯
                                                                       32-
                                                     = 2 x (  32-  +  y 32-  +  z )  = 2 (x + y + z)
                                                                       2
                                                                             3 4
                                                                                               34
                                                              2
                                            2
                                                   3 4
                                    (b)  (9ab  – 15a b ) ÷ (–3ab ) =   9ab - 15ab  =  9ab 2  -  Ê 15ab ˆ
                                                                                                 2 ˜
                                                                       - 3ab 2     - 3ab 2  Á Ë  - 3ab ¯
                                                                                                                  2 2
                                                                                                    2 2
                                                                = –3 – (–5 × a 3 – 1  × b 4 – 2 ) = –3 – (–5a b ) = –3 + 5a b
                                                                  4
                                                                       3
                                                         1
                                                     2
                                                3
                                           4
                                    (c)  (2x  + 3x  – x ) ÷  x =   2x + 3x -  x 2   =   2x 4  +  3x 3  -  x 2
                                                         3          1  x        1 x   1 x   1 x
                                                                    3           3     3     3
                                                               Ê
                                                             =  2 ∏  1ˆ  ¥  x x 4  +  Ê Á Ë 3∏  1ˆ  ¥  x x 3  -  Ê Á Ë 1∏  1ˆ  ¥  x x 2
                                                               Á
                                                                                                 ˜
                                                                                   ˜
                                                                     ˜
                                                                                                3¯
                                                                                  3¯
                                                                   3¯
                                                               Ë
                                                             = (2 × 3) × x 4 – 1  – (3 × 3) × x 3 – 1  – (1 × 3) × x 2 – 1
                                                                      2
                                                                 3
                                                             = 6x  + 9x  – 3x
                        EXERCISE 6.3
                      Divide:
                                                                                                 8
                                                                                             2
                            2
                                                        5
                                                             4
                                                                  3
                        (a)  x y – 3xy by y        (b)  y – 8y  + 5y  by y 2          (c)  –4x  +  xy – 12xz by –4x
                                                                                                 3
                                        2
                                                         6
                            4
                                                                          2
                                                                    3
                                                               4
                                 3
                                                                                   2
                                                                                                            2
                                                                                                      3
                                                                                              4
                       (d)  x  – 3x  +   1  x  by 3x   (e) –p  + 2p  + 4p  + 2p  by  2p   (f)   2x +  3 2x + 2x -  6x by  2x
                                     2
                                      4 3
                                              5 4
                                                        2 2
                                                                                                       3 2 2
                             3 2
                                                                                             2 3 2
                       (g)  4x y  + 10x y  – 12x y  by (–2x y )                       (h) 36x y z  – 28x y z  by (–4xyz)
                    Division of a Polynomial by a Binomial Using Long Division Method
                    Step 1:  The polynomial is the dividend and the binomial is the divisor. Arrange the terms in them in the
                             descending order of their degrees.
                    Step 2:  Divide the first term of the dividend by the first term of the divisor to get the first term of the quotient.
                             Multiply the divisor by the first term of the quotient and subtract the result from the dividend to get
                             the remainder.
                    Step 3:  Taking the remainder, if any, as dividend, repeat step II to obtain the second term of the quotient.
                    Step 4:  Continue the procedure till the remainder is zero or a polynomial of degree less than that of the
                             divisor.
                     110
   113   114   115   116   117   118   119   120   121   122   123