Page 202 - Start Up Mathematics_7
P. 202

Thinking Skills




              1.  In the adjoining figure,              R                                 S
                 ∠RPQ = ∠SQP and
                 RP = SQ. Prove that
                 (a) ∆ RPQ ≅ ∆ SQP.

                 (b)  RQ = SP.
                                                             P                 Q


                                                                                            D                 C
              2.  In the adjoining figure, ABCD is a square and CE = AF. Prove that
                 (a)  ∆ DCE ≅ ∆ BAF.                                                                          E
                 (b)  DEBF is a parallelogram.                                             F
                 [Hint: A quadrilateral is a parallelogram if its opposite sides are
                 equal.]
                                                                                            A                 B


                                                                                                    A

              3.  In ∆ ABC, BE ⊥ AC, CD ⊥ AB and CE = BD. Prove that
                 (a)  ∆ BCE ≅ ∆ CBD.
                 (b)  BE = CD.                                                                D            E





                                                                                           B                  C


                                                                               F                     M
              4.  In the adjoining figure, ∆ FAN ≅ ∆ MUG, FE ⊥ AN
                 and MS ⊥ UG. Prove that ∆ FEA ≅ ∆ MSU and
                 FE = MS.





                                                                        A      E        N      U      S       G



                                                                                      X

              5.  In  the  adjoining  figure,  XO  ⊥ YZ,  OA  ⊥ XY
                 and OB ⊥ XZ. If OY = OZ, then show that OA
                 = OB.
                 [Hint: First prove ∆ XOY ≅ ∆ XOZ and then show
                 ∆ AOY ≅ ∆ BOZ.)                                             A                 B

                                                                            Y         O         Z


             194
   197   198   199   200   201   202   203   204   205   206   207