Page 183 - ICSE Math 8
P. 183

In quadrilateral PQRS (Fig. 16.16), PQ || SR and PS || QR.                P                       Q
                    So, PQRS is a parallelogram.

                    Properties of a parallelogram                                                        O
                    (a)  Opposite sides are of equal length (PQ = SR and PS = QR).
                    (b)  Opposite angles are of equal measure (–P = –R and –Q = –S).    S                       R
                    (c)  The sum of adjacent angles is 180º.                                      Fig. 16.16
                        (  –P + –Q = 180º, –Q + –R = 180º, –R + –S = 180º and –S + –P = 180º).
                    (d)  The diagonals bisect each other (Diagonals PR and SQ bisect each other at point O, so OP = OR and
                        OQ = OS).
                                                                                                          P
                    Rhombus
                    A rhombus is a quadrilateral having all sides equal. Hence, a parallelogram
                    in which two adjacent sides are equal is a rhombus.
                    In parallelogram PQRS (Fig. 16.17), PQ = PS or QR = SR.                   S            O          Q
                    So, PQRS is a rhombus.
                    Properties of a rhombus
                                                                                                          R
                    (a)  All sides are of equal length (PQ = QR = RS = SP).                            Fig. 16.17
                    (b)  Opposite angles are of equal measure (–P = –R and –Q = –S).
                    (c)  The sum of adjacent angles is 180º (–P + –Q = 180º, –Q + –R = 180º, –R + –S = 180º and –S + –P
                        = 180º).
                    (d)  The diagonals bisect each other at right angles (Diagonals PR and SQ bisect each other at point O, so
                        OP = OR and OQ = OS, also PR ^ SQ at point O).

                    Example 4:    Look at the following parallelogram and find the value of the   S     R
                                  unknown x, y, z.                                               50°  y
                    Solution:     In parallelogram PQRS,

                                  –S = –PQR  fi –PQR = 50º   (Opposite angles of a
                                                                 parallelogram are equal)
                                  Ray QR stands on PT, therefore                                     x         z
                                  –PQR + –RQT = 180º    (Linear pair)                               P        Q       T

                                  fi 50º + z = 180º   fi z = 180º – 50º = 130º
                                  Also PQ || SR and SP is the transversal intersecting them, therefore,
                                  –P + –S = 180º           (Interior angles on the same side of transversal are supplementary)
                                  fi x + 50º = 180º  fi x = 180º – 50º = 130º
                                  Again, –R = –P                             (Opposite angles of a parallelogram are equal)
                                  fi  y = x  fi y = 130º
                                  Therefore, x = y = z = 130º

                    Example 5:    Can a quadrilateral ABCD be a parallelogram if:
                                  (a)  –D + –B = 180º?                                          D        9 cm       C
                                  (b)  AB = DC = 9 cm and AD = 5 cm and BC = 5.5 cm?
                    Solution:     (a)  –B + –D = 180º
                                      In a parallelogram, opposite angles are equal.       5 cm                    5.5 cm
                                      fi –B = –D

                                      Since –B + –D = 180º  fi –B = –D = 90º                  A       9 cm         B

                                                                                                                        171
   178   179   180   181   182   183   184   185   186   187   188