Page 43 - Start Up Mathematics_8 (Non CCE)
P. 43
1
1 − () − 1 (−1 ) 16 16
⇒ = ÷ = × = = 4
x 4 16 4 (−1 ) 4
1 1
⇒ = 4 ⇒ x =
x 4
9 − 5 2 − 3
Example 11: Find the reciprocal of ÷ .
2 9
n
9 − 5 2 − 3 2 5 9 3 x − n y
Solution: ÷ = ÷ =
2 9 9 2 x
y
2 5 2 3
= ×
9 9
2 5 + 3 2 8
n
m
= = { (x) × (x) = (x) m + n }
9 9
2 8 1 2 − 8 9 8
So, reciprocal of = = =
9 2 8 9 2
9 Try It Out!
2 −3 2 11 2 3x + 2 Solve the given expression
−
−
−
Example 12: Find the value of x if × = .
5 5 5 mentally. 1 − 1 − 1 −
1
−
2 −3 2 11 2 3x + 2 1 + + 1
−
−
Solution: × = 4 3 2
5 5 5
2 −+3 11 2 3x + 2
−
−
m
n
⇒ = { (x) × (x) = (x) m + n }
5 5
−
2 8 2 3x + 2
−
⇒ =
5 5
m
n
⇒ 3x + 2 = 8 { If (x) = (x) ⇒ m = n}
⇒ 3x = 8 – 2 = 6
6
⇒ x = = 2
3
So, x = 2
p 2 − 2 2 − 1 p −3
Example 13: If q = ÷ ,(q ≠ 0), find the value of q .
3
5
n
p 2 − 2 2 − 1 3 2 5 1 x − n y
Solution: q = ÷ = ÷ =
y
x
2
3
5
2
×
×
3 2 2 3 () 2 2 92 91 9 p 9
= × = × = = = ⇒ =
×
×
2 5 2 () 2 5 45 25 10 q 10
n
p −3 9 −3 10 3 1 000, x − n y
So, = = = =
y
q 10 9 729 x
35