Page 39 - Start Up Mathematics_8 (Non CCE)
P. 39
EXERCISE 2.1
p
1. Write the following in the form .
q
−
−
(a) (–2) –3 (b) 1 − 2 (c) 4 −2 (d) − 3 − 3 (e) 3 −3
2
5
7
4
2. Evaluate:
1
1
2
–1
–2
–2
–2 0
0
(a) {(7) + (4) } × (2) (b) {(3) + (4) – (5) } (c) 1 − 1 + − 1 + − 1
3 4 6
3
1 − 3 1 − 3
−
1
–1
–1 –1
–1
–1 –1
(d) − ÷ (e) {(7) – (8) } – {(3) – (4) }
3 2
4
3. Simplify:
1 − 3 − 1 1
–1
–1
–1 3
–1 2
(a) × 3 () × (b) {(5) × (4) } (c) {(3) ÷ (4) }
3 9 − 3 − 2 − 2 − 3
1
1
2
2
–1 –1
–1
÷
(d) {(5) ÷ (3) } × (2) –1 (e) {(4) – (3 )} × 3 (f) × 1
4
4 3 2
2
–7
–5
2
–5
–5
2
(g) {(3) + (2) – (4) } ÷ 3 2 (h) {(3) × (10) × 125} ÷ {(5) × (6) }
2
–1
–1
4. By what number should (–6) be multiplied to get the product as (15) ?
4 −3 16 − 2
−
5. By what number should be divided to get the quotient as ?
5 25
− 1 −2 − 1 −2 1 − 1 1 − 1
6. Divide the sum of and by the difference of and .
2 3 5 4
Properties of Negative Integral Exponents
In the beginning of the chapter, we have learnt about properties of exponents where x and y are rational numbers
and m and n are natural numbers (positive integers).
The same properties hold good for negative integral exponents of a rational number.
Let’s learn about the properties.
m
n
I. If x and y (x, y ≠ 0) are rational numbers and m and n are integers, then (x) × (x) = x m + n .
()x m
m
n
II. If x (x ≠ 0) is a rational number and m and n are integers, then (x) ÷ (x) = = ()x m − n .
()x n
n m
mn
m n
III. If x (x ≠ 0) is a rational number and m and n are integers, then (x ) = (x) = (x ) .
n
n
n
IV. If x and y (x, y ≠ 0) are any two rational numbers and n is any integer, then (xy) = (x) (y) .
x n x () n
V. If x and y (x, y ≠ 0) are any two rational numbers and n is any integer, then = n .
y
VI. If x and y (x, y ≠ 0) are any two rational numbers and n is any integer, then y ()
x − n 1 y n
= n =
y
x x
y
31