Page 40 - Start Up Mathematics_8 (Non CCE)
P. 40
Example 5: Simplify using the laws of exponent and write the result in exponential form:
–3
8
–7
–3
(a) (5) × (5) (b) (4) × (3) –3 (c) (6) ÷ (6) –3
()4 − 6
–5
3 –2
(d) (2 ) (e) (f) (2) ÷ (2) 3
()5 − 6
–3
m
8
n
Solution: (a) (5) × (5) = (5) 8 + (–3) = (5) 8 – 3 = (5) 5 { (x) × (x) = (x) m + n }
–3
n
n
–3
n
–3
(b) (4) × (3) = (4 × 3) = (12) –3 { (x) × (y) = (xy) }
m
(c) (6) ÷ (6) = (6) –7 – (–3) = (6) –7 + 3 = 6 –4 { (x) ÷ (x) = (x) m – n }
–3
n
–7
mn
m n
3 –2
(d) (2 ) = (2) 3 × (–2) = (2) –6 { (x ) = (x) }
n
()4 − 6 4 − 6 ()x n x
(e) = =
y
()5 − 6 5 ()y n
n
–5
m
3
(f) (2) ÷ (2) = (2) –5 – 3 = (2) –8 { (x) ÷ (x) = (x) m – n }
Example 6: Simplify and write in the exponential form with positive exponent.
− −2 5 7 −5
3
3
−
−
−
–4
(a) (2) × (5) –4 (b) (c) 2 2 × 2
2 ÷
3
3
3
–4
–4
n
n
–4
n
Solution: (a) (2) × (5) = (2 × 5) = (10) –4 { (x) × (y) = (xy) }
1 1 4
= =
10
() 4 10
×−2)
3 3 −2 3 3 (
−
−
mn
m n
(b) = { (x ) = x }
2 2
3 −6 2 6 2 6
−
−
= = =
2 3 3
−
2 5 2 7 2 −5 2 5 − 7 2 −5
−
−
m
n
(c) − − × − = × { (x) ÷ (x) = (x) m – n }
÷
3 3 3 3 3
2 −2 2 −5 2 −+ −2 ( 5)
−
−
−
m
n
= × = { (x) × (x) = (x) m + n }
3 3 3
2 −−2 5 2 −7
−
−
= =
3 3
n
3 7 − 3 7 x − n y
= = =
y
− 2 2 x
Example 7: Simplify and write in exponential form:
−3
–4
4
(a) (−8 ) × − 1 −3 (b) (–2) × (3) × (5) –4
2
− 4
–10
(c) 32 5 (d) {(3) ÷ (3) } × (3) –5 (NCERT)
–7
243
32