Page 297 - Start Up Mathematics_8 (Non CCE)
P. 297

8 316,
                                                          3
                                           3
                                    fi 308x  = 8,316  fi x  =        = 27
                                                               308
                                    fi x =  27  = 3
                                           3
                                    \ Radius (r) = 7 × 3 = 21 cm, Height (h) = 2 × 3 = 6 cm
                                                                         22
                                    \ Total surface area = 2pr(h + r) = 2 ×    × 21 × (21 + 6) cm 2
                                                                          7
                                                             22
                                                                             2
                                                       = 2 ×     × 21 × 27 cm  = 3,564 cm 2
                                                              7
                    Example 36:     A cylindrical bucket, 14 cm in radius, is filled with water to some height. If a rectangular
                                    solid of size 28 cm × 11 cm × 10 cm is immersed in water, find the height by which water
                                    rises in the bucket.

                    Solution:       Radius of bucket (r) = 14 cm
                                    Let the rise in water level be h cm, then
                                    Volume of cylindrical column of height h = Volume of rectangular solid
                                       22
                                    fi     × 14 × 14 × h = 28 × 11 × 10
                                        7
                                           28 11 10 7¥  ¥  ¥
                                    fi h =                = 5
                                            22 14 14¥  ¥
                                    Hence, the level of water rises by 5 cm.
                    Example 37:     An iron cylindrical pipe has thickness of 0.5 cm and external diameter of 4.5 cm. If the mass
                                           3
                                    of 1 cm  of the metal is 8 g, find the mass of a 77 cm long pipe.
                    Solution:       External diameter = 4.5 cm

                                                           45.
                                    \ External radius (R) =     cm
                                                            2
                                    Thickness = 0.5 cm
                                                          Ê  45.   ˆ       Ê  45 1. - ˆ   35.
                                    \ Internal radius (r) =  Á Ë  - 05.  ˜   cm =  Á Ë  ˜ ¯   cm =   2   cm
                                                                   ¯
                                    Height (h) = 77 cm      2                 2
                                    Volume of pipe = External volume – Internal volume

                                                         2
                                                             2
                                                  = ph(R  – r )
                                                  = ph(R + r)(R – r)

                                                     22        Ê  45.  35. ˆ Ê  45.  35. ˆ
                                                  =     × 77 ×  Á   +   ˜ Á    -   ˜   cm 3
                                                     7         Ë  2   2 ¯ Ë  2   2 ¯
                                                     22         8    1
                                                  =      × 77 ×    ×    cm 3
                                                     7          2    2

                                                                  1
                                                                      3
                                                                                        3
                                                  = 22 × 11 × 4 ×  cm  = 11 × 11 × 4 cm  = 484 cm 3
                                                                  2
                                                3
                                    Mass of 1 cm  = 8 g
                                                     3
                                    \ Mass of 484 cm  = (8 × 484) g = 3,872 g = 3.872 kg
                                    Hence, the mass of the iron cylinder is 3.872 kg.

                                                                                                                    289
   292   293   294   295   296   297   298   299   300   301   302