Page 296 - Start Up Mathematics_8 (Non CCE)
P. 296

Example 32:     A milk tank is in the form of a cylinder whose radius is 1.5 m and height is 7 m. Find the
                                    quantity of milk in litres that can be stored in the tank.                   (NCERT)
                    Solution:       Radius of milk tank (r) = 1.5 m, Height of milk tank (h) = 7 m
                                                                              }
                                                           2
                                                                                  3
                                                                       15 ¥)
                                    Volume of milk tank = pr h =  { 22  ¥ (.  2  7  m  =  Ê 22  ¥ .  ¥ .  ¥  ˆ  3   3
                                                                                            15 15 7  m  = 49.5 m
                                                                                      Á
                                                                                                      ˜
                                                                                                      ¯
                                                                                      Ë
                                            3
                                    Now 1 m  = 1,000 L            7                     7
                                             3
                                    fi 49.5 m  = (49.5 × 1,000) L = 49,500 L
                                    Hence, 49,500 litres of milk can be stored in the milk tank.
                    Example 33:     The circumference of the base of a cylinder is 264 cm and its height is 24 cm. Find the volume
                                    of the cylinder.
                    Solution:       Circumference of base = 264 cm
                                                                 22
                                    fi 2pr = 264        fi  2 ×      × r = 264
                                                                 7
                                           264 7¥
                                    fi r =         = 42 cm
                                           222¥
                                    Height of cylinder (h) = 24 cm

                                                                                       3
                                                             2
                                    \ Volume of cylinder = pr h =   22  × 42 × 42 × 24 cm  = 1,33,056 cm 3
                                                                  7
                    Example 34:     Two cylindrical cans have equal height. If the radius of one is two-third of the other and it
                                    holds 20 litres of liquid, find the capacity of the second can. (Height and radius are in metres.)

                    Solution:       Let the radius of the second can (r ) be (r) m.
                                                                   2
                                                                       Ê  2 ˆ
                                                                          r  m
                                    Then, the radius of the first can (r ) =  Á Ë  3 ¯ ˜
                                                                   1
                                    Let the height of the two cans be (h) m.

                                                                            20
                                                                                                             3
                                    Volume of the first can (V ) = 20 litres =  1 000,   m    3       (   1 m  = 1,000 L)
                                                            1
                                               20                 Ê  2 ˆ  2      20
                                         2
                                                      3
                                    fi pr h = 1 000,   m    fi p ×  Á Ë  3 ¯ ˜   × h =  1 000,   m 3
                                                                     r
                                         1
                                           4         20                     20 ¥  9
                                                                      2
                                              2
                                                           3
                                    fi p ×    r h =       m   fi p × r h =            m 3
                                           9       1 000,                  1 000 ¥,  4
                                                                      2
                                                                            2
                                                                                              3
                                    Volume of the second can (V ) = pr h = pr h  =  1 000 ¥, 20 ¥  9 4   m  = 45 L
                                                                     2
                                                               2
                                    \ The capacity of the second tank = 45 L
                                                                                3
                        This question can also be done without changing 20 L into m .
                    Example 35:     The radius and height of a cylinder are in the ratio 7 : 2. If the volume of the cylinder is
                                            3
                                    8,316 cm , find its total surface area.
                    Solution:       Let the radius of the cylinder (r) be 7x cm and the height of the cylinder (h) be 2x cm.
                                                          2
                                    Volume of cylinder = pr h
                                            22                         22
                                                     2
                                                                               2
                                                                3
                                    8,316 =     × (7x)  × (2x) cm   fi    × 49x  × 2x = 8,316
                                            7                          7
                     288
   291   292   293   294   295   296   297   298   299   300   301