Page 127 - Start Up Mathematics_8 (Non CCE)
P. 127

Step 3:   Pair the second and fourth term: 15 + 25p = 5 × 3 + 5 × 5p =  5(3 + 5p)
                                                                                          = 5(5p + 3)
                                                  Note that (5p + 3) is a common factor in step 2 and step 3.
                                        Step 4:   Combine step 2 and step 3 together.
                                                  (15pq + 9q) + (15 + 25p) = 3q(5p + 3) + 5(5p + 3) = (3q + 5)(5p + 3)
                    Example 6:      Factorize the following:
                                                                         3
                                                                              2
                                    (a)  x(x + y – z) – yz          (b)  l x + l (x – y) – l(y + z) – z
                                          2
                                                2
                                                                 2
                                                      2
                                    (c)  (x  – 2x)  – 3(x  – 2x) –y(x  – 2x) + 3y
                                                          2
                    Solution:       (a)  x(x + y – z) – yz = x  + xy – xz – yz                (Simplifying the expression)
                                                           2
                                                       = (x  + xy) – (xz + yz)                              (Regrouping)
                                                       = x(x + y) – z(x + y)
                                                       = (x – z)(x + y)                         {Taking (x + y) common}
                                                                    3
                                         3
                                                                              2
                                              2
                                                                         2
                                    (b)  l x + l (x – y) – l(y + z) – z = l x + l x – l y – ly – lz – z  (Simplifying the expression)
                                                                          2
                                                                                2
                                                                     3
                                                                 = (l x + l x) – (l y + ly) – (lz + z)      (Regrouping)
                                                                    2
                                                                 = l x(l + 1) – ly(l + 1) – z(l + 1)
                                                                     2
                                                                 = (l x – ly – z)(l + 1)         {Taking (l + 1) common}
                                                2
                                                                 2
                                                      2
                                          2
                                    (c)  (x  – 2x)  – 3(x  –2x) – y(x  – 2x) + 3y
                                                               2
                                                                     2
                                                                                   2
                                                         2
                                                    = {(x  – 2x)  – 3(x  – 2x)} – {y(x  – 2x) – 3y}         (Regrouping)
                                                               2
                                                        2
                                                                              2
                                                    = (x  – 2x)(x  – 2x – 3) – y(x  – 2x – 3)
                                                        2
                                                                                                     2
                                                                   2
                                                    = (x  – 2x – y)(x  – 2x – 3)           {Taking (x  – 2x – 3) common}
                        EXERCISE 7.2
                       Factorize the following:
                                                                                                    2
                                                                      2
                         (a)  ab – cb + ad – cd            (b)  6xy – y  + 12xz – 2yz         (c)  b  – ab(1 – a) – a 3
                                                                      2
                                                                 3
                             2
                                                                                                      2
                                                                                                                 2
                                                                              2
                                                                                                                     2
                        (d)  a  – a(x + 2y) + 2xy          (e)  x  – 2x y + 3xy  – 6y 3       (f)  xy(a  + 1) – a(x  + y )
                                                                                    2
                                                                        2
                                   3
                        (g)  8(p – q)  – 12(p – q) 2       (h)  (lx – my)  + (mx + ly)        (i)  1 + xy – x – y
                    Factorization of Binomial Expressions When Expressed as the Difference of Two Squares
                    The factorization of binomial expressions expressible as the difference of two squares involves the following
                                 2
                             2
                    identity: p  – q  = (p + q)(p – q)
                                                    2
                                                                       4
                                                                                        4
                    Example 7:      Factorize: (a) 16x  – 25y 2     (b) 81x  – 625    (c) l  – (m + n) 4
                                                         2
                                                  2
                                           2
                    Solution:       (a)  16x  – 25y  = (4x)  – (5y) 2
                                                                                                   2
                                                                                                       2
                                                   = (4x + 5y)(4x – 5y)                    {Using p  – q  = (p + q)(p – q)}
                                           4
                                                       2 2
                                    (b)  81x  – 625 = (9x )  – (25) 2
                                                                                                       2
                                                                 2
                                                                                                   2
                                                       2
                                                  = (9x  + 25)(9x  – 25)                   {Using p  – q  = (p + q)(p – q)}
                                                       2
                                                                   2
                                                                       2
                                                  = (9x  + 25){(3x)  – 5 }
                                                       2
                                                                                                   2
                                                                                                       2
                                                  = (9x  + 25)(3x + 5)(3x – 5)             {Using p  – q  = (p + q)(p – q)}
                                                   4
                                                                    2 2
                                         4
                                                        2 2
                                    (c)  l  – (m + n)  = (l )  – {(m + n) }
                                                                                                       2
                                                                  2
                                                                                 2
                                                                      2
                                                                                                   2
                                                        2
                                                    = {l  + (m + n) } {l  – (m + n) }      {Using p  – q  = (p + q)(p – q)}
                                                                                                                    119
   122   123   124   125   126   127   128   129   130   131   132