Page 132 - Start Up Mathematics_8 (Non CCE)
P. 132

2
                                        Coefficient of z  = 1, coefficient of z = –6, constant term = –72
                                          Split the middle term, i.e., –6 in such a way that the sum of the two parts = –6 and their
                                        product = –72

                                        –72 can be written as
                                          (–6) × 12, 6 × (–12), 9 × (–8), (–9) × 8, 18 × (–4), (–18) × 4, 24 × (–3), (–24) × 3,
                                        72 × (–1), (–72) × 1, 36 × (–2), –36 × 2
                                        Out of these factors, only –12 + 6 = –6
                                            2
                                                         2
                                        \ z  – 6z – 72 = z  + (–12 + 6)z – 72
                                                         2
                                                      = z  – 12z + 6z – 72
                                                      = z(z – 12) + 6(z – 12)

                                                      = (z + 6)(z – 12)                        {Taking (z – 12) common}
                                                      = (3x + 2y + 6)(3x + 2y – 12)                (Putting the value of z)

                        EXERCISE 7.5
                       Factorize the following algebraic expressions by splitting the middle term:
                                                                               2
                            2
                                                              2
                       (a)  x  – 21x + 108     (b)  40 + 3p – p       (c)  9x – x  – 20      (d)  (x + 7)(x – 10) + 16
                                                                                                    2
                                   2
                             2
                                                    2
                                                                           2
                       (e)  (x  – 5x)  – 36     (f)  x  – x – 56     (g)  x  – 11x + 24      (h)  9a  – 6a + 1
                                                                            2
                                                                                                          2
                                                      2
                                                                  2
                             2
                       (i)  8x  – 22xy + 15y 2   (j)  3a  + 11ab + 6b   (k)  2a  – 17a – 30   (l)  2(3x – 4y)  – 3(3x – 4y) – 2
                                                                                  2
                                                      2
                             2
                       (m) 2x  + 7x – 4        (n)  5a  + 13a + 6    (o)  3(2x – y)  + 14(2x – y) + 8
                    Factorization of Quadratic Polynomials Using the Method of Completion of Perfect Squares
                                                            2
                                                                                                       2
                    Step 1:   In the quadratic polynomial ax  + bx + c, (a π 0) make the coefficient of x  as 1 by dividing/
                              multiplying the entire expression by it.
                                               Ê  coefficientof xˆ 2
                    Step 2:   Add and subtract  Á Ë    2       ˜  .
                                                               ¯
                    Step 3:   Write the first three terms as the square of a binomial and simplify the last two terms.
                                              2
                                                   2
                    Step 4:   Factorize using p  – q  = (p + q)(p – q).
                                                                            2
                    Example 14:     Factorize by completing the squares: (a) 2x  + 6x + 1      (b) 12 – 4x – x 2
                                          2
                    Solution:       (a)  2x  + 6x + 1
                                        Taking 2 common from all the terms, we have
                                                                                            ¸
                                                           Ô
                                          Ê         1ˆ     Ï           Ê 3ˆ Ê ˆ  2  Ê 3ˆ 2  1Ô
                                                                              3
                                            2
                                                               2
                                        2 x +  3x +  2¯   =  2 ()x + 2()x  Á ˜ Á ˜  - Á ˜  + ˝
                                                                           +
                                                           Ì
                                          Á
                                                     ˜
                                          Ë
                                                                                     2¯
                                                                                   Ë
                                                                       Ë
                                                                        2¯ Ë ¯
                                                                              2
                                                           Ó Ô
                                                                                          2Ô
                                                                                            ˛
                                                                                                     ¸ ¸
                                                           Ï Ê Ô  3ˆ  2  9  1Ô   Ï Ê Ô  3ˆ  2  Ê 9  1ˆ Ô
                                                                             ¸
                                                        =  2Ì Á  x +  ˜  -  + ˝ =  2Ì Á x +  ˜  - Á  -  ˜ ˝
                                                                             ˛
                                                                                                     ˛
                                                           Ó Ë Ô  2¯   4   2Ô    Ó Ë Ô  2¯   Ë 4  2¯ Ô
                                                                                                  ¸
                                                                                                 2
                                                                           ¸
                                                                                Ô
                                                           Ï Ê Ô  3ˆ  2  Ê  7ˆ Ô  Ï Ê  3ˆ 2  Ê  7 ˆ Ô
                                                        =  2Ì Á  x +  ˜  -  Á ˜ ˝ = Ì  x + ˜ - Á  ˜  ˝
                                                                              2 Á
                                                                                                  ˛
                                                                           ˛
                                                           Ó Ë Ô  2¯   Ë  4¯ Ô  Ó Ë Ô Ô  2 ¯  Ë  2  ¯ Ô
                                                            Ê Ï  3    7 ˆ Ê   3    7 ˆ ¸
                                                        =  2 Á Ì  x +  +  ˜ Á  x +  -  ˜ ˝
                                                                                     ¯
                                                           Ó Ë   2    2  ¯ Ë  2    2 ˛
                     124
   127   128   129   130   131   132   133   134   135   136   137