Page 125 - Start Up Mathematics_8 (Non CCE)
P. 125

Factorization of Algebraic Expressions with a Common Monomial in Each Term
                    Step 1:    In the algebraic expression, find the highest common factor (HCF) of its terms.

                    Step 2:    Express each term of the algebraic expression as the product of the HCF and the quotient, when it
                              is divided by the HCF.
                    Step 3:    Using distributive property of multiplication over addition, express the given algebraic expression
                              as the product of its HCF and the quotient obtained in step 2.
                                                                                                3 2
                                                   2
                                                                         3 2
                                                                                 2 3
                                                                                                               4 3
                                                                                                        2
                    Example 2:      Factorize: (a) 4x  + 12      (b) 2x y  – 5x y         (c) 15x y  + 5x y – 20x y
                    Solution:
                                                                                    3 2
                                                                                           2 3
                                         2
                                   (a)  4x  + 12                              (b)  2x y  – 5x y
                                                                                    3 2
                                         2
                                        4x = 2 × 2 × x × x                        2x y  = 2 × x × x × x × y × y
                                                                                    2 3
                                        12 = 2 × 2 × 3                            5x y  = 5 × x × x × y × y × y
                                                                                           3 2
                                                 2
                                                                                                           2 2
                                                                                                     2 3
                                        HCF of 4x  and 12 = 4                     HCF of 2x y  and 5x y  = x y
                                                                                               2 2
                                       So, we take 4 common from both the         So, we take x y  common from both
                                       terms.                                     the terms.
                                                                                      3 2
                                                       2
                                            2
                                                                                                    2 2
                                                                                              2 3
                                       \ 4x  + 12 = 4(x  + 3)                     \ 2x y  – 5x y  = x y (2x – 5y)
                                                  2
                                                         4 3
                                           3 2
                                   (c)  15x y  + 5x y – 20x y                        Extension
                                           3 2
                                        15x y  = 3 × 5 × x × x × x × y × y           If a polynomial is divisible by one
                                         2
                                        5x y = 5 × x × x × y                         and itself only, it is said to be a prime
                                           4 3
                                        20x y  = 2 × 2 × 5 × x × x × x × x × y × y × y  polynomial.        2    2
                                                                                     For example, 3x + 4, 2x  + 3y , etc.
                                                  3 2
                                                        2
                                                                         2
                                                                  4 3
                                        HCF of 15x y , 5x y and 20x y  = 5x y
                                                 2
                                        Taking 5x y common from all the terms, we get
                                                  2
                                                                               2 2
                                           3 2
                                                                 2
                                                         4 3
                                        15x y  + 5x y – 20x y = 5x y(3xy + 1 – 4x y )
                    Factorization of Algebraic Expressions Having a Binomial as Common Factor
                    Step 1:    Locate the common binomial.
                    Step 2:    Write the given algebraic expression as a product of this common binomial and the quotient obtained
                              on dividing the given algebraic expression by this binomial.
                    Example 3:      Factorize the following:
                                                                                  2
                                    (a)  5(3x – 4) + 7(3x – 4)      (b)  8(5x – 9y)  – 12(5x – 9y)
                                                2
                                                                               2
                                    (c)  (2x – 3y)  – 6x + 9y       (d)  9(x – y)  + 6(y– x)
                    Solution:       (a)  5(3x – 4) + 7(3x – 4) = (5 + 7)(3x – 4)               {Taking (3x – 4) common}
                                                            = 12(3x – 4)
                                                 2
                                    (b)  8(5x – 9y)  – 12(5x – 9y) = 4 × 2(5x – 9y) × (5x – 9y) – 4 × 3(5x – 9y)
                                                                = 4(5x – 9y) {2(5x – 9y) – 3}  {Taking 4(5x – 9y) common}
                                                                = 4(5x – 9y)(10x – 18y – 3)
                                                                     2
                                                2
                                    (c)  (2x – 3y)  – 6x + 9y = (2x – 3y)  – 3 × 2x + 3 × 3y
                                                                     2
                                                           = (2x – 3y)  – 3(2x – 3y)   {Taking (–3) common from –6x + 9y}
                                                           = (2x – 3y)(2x – 3y – 3)           {Taking (2x – 3y) common}
                                                                                                                    117
   120   121   122   123   124   125   126   127   128   129   130