Page 109 - Start Up Mathematics_8 (Non CCE)
P. 109

(b)  (4x – 3)(4x + 5)
                                        \ (4x – 3)(4x + 5) = (y – 3)(y + 5)                               (Putting 4x = y)
                                                   2
                                                                                                        2
                                                = y  + (–3 + 5)y + (–3) ¥ 5     {Using (x + a)(x + b) = x  + (a + b)x + ab}
                                                   2
                                                = y  + 2y – 15
                                                      2
                                                = (4x)  + 2(4x) – 15                                      (Putting y = 4x)
                                                     2
                                                = 16x  + 8x – 15
                                                                               2
                    Example 34:     Evaluate the following using (x + a)(x + b) = x  + (a + b)x + ab:
                                    (a) 104 ¥ 101     (b) 54 ¥ 47     (c) 96 ¥ 99
                    Solution:       (a)  104 ¥ 101 = (100 + 4) ¥ (100 + 1)                     (Here x = 100, a = 4, b = 1)
                                                         2
                                                  = (100)  + (4 + 1)100 + (4 ¥ 1)
                                                  = 10,000 + 500 + 4 = 10,504
                                    (b)  54 ¥ 47 = (50 + 4) ¥ (50 – 3)                         (Here x = 50, a = 4, b = –3)
                                                     2
                                                = (50)  + {4 + (–3)}50 + 4 ¥ (–3)
                                                = 2,500 + (1)(50) – 12 = 2,500 + 50 – 12 = 2,538
                                    (c)  96 ¥ 99 = (100 – 4) ¥ (100 – 1)                    (Here x = 100, a = –4, b = –1)
                                                       2
                                                = (100)  + {(–4) + (–1)}100 + (–4) ¥ (–1)
                                                = 10,000 + (–5)100 + 4 = 10,000 – 500 + 4 = 9,504

                        EXERCISE 5.7


                         1.  Find the following products:
                            (a)  (x + 2)(x + 6)      (b)  (x + 3)(x – 4)   (c)  (x – 7)(x – 5)        (d)  (4x + 7)(4x – 3)

                                Ê  3   ˆ Ê 3    ˆ        Ê    2 ˆ Ê   ˆ 5         2          2
                            (e)   Á Ë  4  y - 2 ˜ Á 4  y + 4   (f)   Á Ë  x +  5 ˜ Á x +  ˜     (g)  (7x  – 6xy)(7x  – 3xy)
                                                ˜
                                                ¯
                                       ¯ Ë
                                                               ¯ Ë
                                                                      ¯ 2
                                Ê    1ˆ Ê    3ˆ
                                  2
                            (h)   Á Ë l -  2¯ Ë l +  4¯ ˜
                                          2
                                      ˜ Á
                                                                                  2
                         2.  Evaluate the following using the identity (x + a)(x + b) = x  + (a + b)x + ab.
                            (a)  103 ¥ 105        (b)  108 ¥ 106          (c)  97 ¥ 96            (d)  102 ¥ 95
                            (e)  59 ¥ 48          (f)  28 ¥ 33            (g)  995 ¥ 1,004        (h)  45 ¥ 47




                                                           MATHS LAB ACTIVITY

                                                             2
                     Objective: To show that (x + a)(x + b) = x  + (a + b)x + ab
                     Material required: Sketch pen, scale, a rectangular piece of cardboard, a pair of scissors, glue stick/
                     fevicol, colours, sheet of paper
                     Method:
                     Step 1.    On a piece of cardboard, draw a rectangle WING of length (x + a) cm and breadth (x + b) cm.
                                Mark a point P on WI so that WP = x and a point Q on IN so that IQ = x.



                                                                                                                    101
   104   105   106   107   108   109   110   111   112   113   114