Page 172 - Start Up Mathematics_7
P. 172

Solution:     (a)  Yes, OP + OQ > PQ

                               OP, OQ and PQ are the sides of ∆ OPQ and                   R
                              the sum of any two sides of a triangle is greater
                              than the third side.
                                                                                               O
                          (b), (c) are also true for the same reason given in       P                          Q
                              part (a) above.
            Example 13: AD is a median of a triangle ABC. Is AB + BC + CA > 2 AD? Also verify by actual
                          measurement.

            Solution:     Since the sum of two sides of a triangle is greater than the third side, therefore
                          In ∆ ABD, AB + BD > AD                     ...(1)                             A

                          In ∆ ADC, AC + DC > AD                     ...(2)

                          Adding (1) and (2) we get,
                          AB + AC + (BD + DC) > 2AD
                          AB + BC + CA > 2AD                                        B            D            C
            Example 14: ABCD is a quadrilateral. Is AB + BC + CD + DA > AC + BD? Also verify by actual
                          measurement.

            Solution:     Since the sum of two sides of a triangle is greater than the third side, therefore
                          In ∆ ABC, AB + BC > AC                     ...(1)
                          In ∆ BCD, BC + CD > BD                     ...(2)               D                  C

                          In ∆ CDA, CD + DA > AC                     ...(3)
                          In ∆ DAB, DA + AB > BD                     ...(4)
                                                                                          A                    B
                          Adding (1), (2), (3) and (4) we get,
                          (AB + BC) + (BC + CD) + (CD + DA) + (DA + AB) > AC + BD + AC + BD

                          ⇒ 2(AB + BC + CD + DA) > 2(AC + BD)
                          ⇒ AB + BC + CD + DA > AC + BD                             D                   C
            Example 15: ABCD is a quadrilateral. Show that,

                          AB + BC + CD + DA < 2(AC + BD).                                      O
            Solution:     Since the sum of two sides of a triangle is greater
                          than the third side, therefore                             A                        B

                          In ∆ AOB, AB < AO + OB                    ...(1)
                          In ∆ BOC, BC < BO + OC                    ...(2)

                          In ∆ COD, CD < CO + OD                    ...(3)
                          In ∆ DOA, DA < DO + OA                    ...(4)
                          Adding (1), (2), (3) and (4) we get,

                          AB + BC + CD + DA < (AO + OB) + (BO + OC) + (CO + OD) + (DO + OA)
                          ⇒ AB + BC + CD + DA < 2[(AO + OC) + (BO + OD)]

                          ⇒ AB + BC + CD + DA < 2(AC + BD)


             164
   167   168   169   170   171   172   173   174   175   176   177