Page 169 - Start Up Mathematics_7
P. 169
(d) Let the other base angle be y
y = 25° (Vertically opposite angles)
x = y (Base angles of an 25°
isosceles triangle) x y
∴ x = 25°
Example 10: Find the angles x and y in each case.
88°
y
x
(a) (b)
110°
y 40°
x
Solution: (a) Let the other two angles of the triangle be a and b.
a = 88° (Vertically opposite angles)
b = x (Angles opposite equal sides)
a + b + x = 180° (Angle sum property) 88°
⇒ 88° + x + x = 180° ( a = 88°, b = x) a
⇒ 2x = 180° – 88° = 92° y
⇒ x = 46° x b
Also y = x + 88° (Exterior angle property)
⇒ y = 46° + 88°
⇒ y = 134°
(b) We have x + 90° = 110° (Exterior angle property)
⇒ x = 20°
Now, 90° + y + 40° = 180° (Angle sum property)
⇒ y = 180° – 130°
⇒ y = 50°
EXERCISE 10.1
1. In the figures given below, the measures of sides are indicated. State whether the triangles
are scalene, isosceles or equilateral.
12 cm 13 cm
6 cm 6 cm 6 cm
(a) 6 cm (b) (c)
8 cm 5 cm 6 cm
161