Page 37 - ICSE Math 8
P. 37
25 × ()p − 4 ()5 2 1 () p − 4
Solution: (a) = × ×
5 () − 3 × 10 × ()p − 8 ()5 − 3 10 () p − 8
m
4
( 3
n
= ()5 2 −− ) × 1 × ()p −− ( 8− ) { (x) ÷ (x) = (x) m – n }
10
5
= ()5 2 + 3 × 1 × ()p − 4 + 8 = ()5 × 1 × ()p 4
10 4 4 5 × 2
1
= ()5 5 − 1 ×× () =p 4 () 5 × ()p = 625 p 4
2 2 2
()3 − 5 × ()10 − 5 × 125 ()3 − 5 × (5 × ) 2 − 5 × ()5 3 ()3 − 5 × ()5 − 5 × ()2 − 5 × ()5 3
(b) = =
()5 − 7 × ()6 − 5 ()5 − 7 × (3 2× ) − 5 () 5 −77 × 3 () − 5 × 2 () − 5
= (3) –5 – (–5) × (5) –5 + 3 – (–7) × (2) –5 – (–5)
n
m
m
n
{ (x) × (x) = (x) m + n and (x) ÷ (x) = (x) m – n }
= (3) –5 + 5 × (5) –2 + 7 × (2) –5 + 5
5
0
0
0
5
= (3) × (5) × (2) = 1 × (5) × 1 { (x) = 1}
5
= (5) = 3,125
EXERCISE 2.2
1. Evaluate. −2 − 3
–2
(a) (3) (b) (–5) –4 (c) − 1 (d) 2
p 4 5
2. Write the following in the form q .
2
5
(a) 3 − 1 (b) ( − ) ×6 −1 −1 (c) 3 − 1 × − 1
5 5 2
3
3. Simplify.
–1
–1 2
–1
–1
–1
–1 –1
–1 –1
–1
–1
(a) {(5) × (4) } (b) {(5) ÷ (6) } (c) {(2) × (3) } × (4) (d) {(4) – (5) } ÷ (3) –1
4. Find the reciprocal of the following.
1 − 1 3 2 − 2 3 − 4 4 −2 4 −3 4 5
−
−
−
(a) (b) ÷ (c) × ÷
4 3 2 7 7 7
5. Write each of the following as a rational number with negative exponent. 3
2
3
(a) (7) 4 (b) 4 6 (c) 2 3 − 2 (d) − 1
9 3 4
6. Write each of the following as rational number with positive exponent.
4 − 3 1 − 2 3 3 − 3 − 4 –5 3 –4
(a) (b) (c) (d) (8) × (8) × (8)
3 5 7
7. Simplify. −1
2
4
7
−
(a) 3 2 × 1 × 3 () × − 1 (b) 3 − 2 + 2 − 2 + 1 − 2 (c) − 1 −2
2 4 − 4 3 4 3 2 3
4
(
1
3
2
3
2
(d) 5 − ) × − 3 (e) − 1 ×− ( 25) − 1 − 1 (f) 1 3 2 ÷ 2 − 1 3
×
3 5 3 2 3
–1
–1
8. By what number should (3) be multiplied to get the product as (–6) ?
25