Page 35 - ICSE Math 8
P. 35
1 2 Try These
⇒ x = 15 ÷
3 1. {(6) – (9) } + {(2) – (3) }
–1
–1 –1
–1 –1
–1
3 2 1 − 2 1 − 2 1 − 2
2
⇒ x = 15 × = 15 × (3) = 15 × 9 = 135 2. Find + + .
1 2 3 4
So, the required number is 135.
EXERCISE 2.1
p
1. Write the following in the form q .
−
−
(a) (–2) –3 (b) 1 − 2 (c) 4 −2 (d) − 3 − 3 (e) 3 −3
5
2
4
7
2. Evaluate. − 1 − 1 − 1
1
–2
2
–2 0
0
–2
–1
(a) {(7) + (4) } × (2) (b) {(3) + (4) – (5) } (c) 1 + + 1
3 4 6
3
−
1 − 3 1 − 3
1
–1 –1
–1
–1 –1
–1
(d) − ÷ (e) {(7) – (8) } – {(3) – (4) }
3 2
4
3. Simplify.
1 − 3 − 1 1 –1 –1 2 –1 –1 3
(a) × 3 () × (b) {(5) × (4) } (c) {(3) ÷ (4) }
3 9 − 2 − 2 − 3
1
1
2
–1
–1 –1
2
(d) {(5) ÷ (3) } × (2) –1 (e) {(4) – (3 )} × 3 − 3 (f) × 1
÷
4
4 3 2
2
–5
–5
2
–7
2
–5
(g) {(3) + (2) – (4) } ÷ 3 2 (h) {(3) × (10) × 125} ÷ {(5) × (6) }
2
–1
–1
4. By what number should (–6) be multiplied to get the product as (15) ?
4 −3 16 − 2
−
5. By what number should be divided to get the quotient as ?
5 25
6. Divide the sum of − 1 −2 and − 1 −2 by the difference of 1 − 1 and 1 − 1 .
2 3 5 4
More Examples
Example 4: Simplify using the laws of exponent and write the result in exponential form.
–7
8
–3
–3
(a) (5) × (5) (b) (4) × (3) –3 (c) (6) ÷ (6) –3
–5
3 –2
(d) (2 ) (e) ()4 − 6 (f) (2) ÷ (2) 3
()5 − 6
n
m
8
–3
Solution: (a) (5) × (5) = (5) 8 + (–3) = (5) 8 – 3 = (5) 5 { (x) × (x) = (x) m + n }
n
–3
n
–3
–3
n
(b) (4) × (3) = (4 × 3) = (12) –3 { (x) × (y) = (xy) }
n
(c) (6) ÷ (6) = (6) –7 – (–3) = (6) –7 + 3 = 6 –4 { (x) ÷ (x) = (x) m – n }
–3
–7
m
mn
3 –2
m n
(d) (2 ) = (2) 3 × (–2) = (2) –6 { (x ) = (x) }
23