Page 36 - ICSE Math 8
P. 36
n
()4 − 6 −6 ()x n x
4
(e) = =
5
y
()5 − 6 ()y n
–5
n
m
3
(f) (2) ÷ (2) = (2) –5 – 3 = (2) –8 { (x) ÷ (x) = (x) m – n }
Example 5: Simplify and write in the exponential form with positive exponent.
− −2 5 7 −5
3
3
−
−
−
–4
(a) (2) × (5) –4 (b) (c) 2 2 × 2
2 ÷
3
3
3
4
–4
–4
–4
n
n
–4
n
Solution: (a) (2) × (5) = (2 × 5) = (10) = 1 = 1 { (x) × (y) = (xy) }
10
() 4 10
×−2)
3 3 −2 3 3 ( 3 −6 2 6 2 6
−
−
−
−
m n
mn
(b) = = = = { (x ) = x }
2 2 2 3 3
−
2 5 2 7 2 −5 2 5 − 7 2 −5
−
−
m
n
(c) − − × − = × { (x) ÷ (x) = (x) m – n }
÷
3 3 3 3 3
2 −2 2 −5 2 −+ −2 ( 5)
−
−
−
n
m
= × = { (x) × (x) = (x) m + n }
3 3 3
2 −−2 5 2 −7
−
−
= =
3 3
n
−
3 7 3 7 x − n y
= = =
y
− 2 2 x
Example 6: Simplify.
2
2 3 2 − 2 1 − 2 1 1 − 3 1 − 3 1 − 3
(a) × × × (b) − ÷
3 3 2 24 4 3
5
2 3 2 − 2 1 2 − 2 1 2 3 +− ( 2) 1 2 ×− ( 2) 1
Solution: (a) × × × = × ×
3 3 2 24 3 2 24
m
n
m n
mn
{ (x) × (x) = (x) m + n ; (x ) = (x) }
2
1
= 2 1 × − 4 × 1 = 2 × 2 () 4 × 1 = 2 × () 4 × 1 = 2 () 5 × 1
3 2 24 3 24 324× 324×
2
2
2
2 ×××× 2 32 4 4
= = = =
×
324× 324 33× 9
1 − 3 1 − 3 4 3 3 3 x − n y
3
n
−
3
5
1
(b) − ÷ = − ÷ =
x
4 3 1 1 y
5
1
3
1
= ()4 { 3 − ()3 } ÷ 5 = {64 27− }× 3
3
1 5
1 () 3 37 1× 37 x n () n
x
= 37 × = = =
5 () 3 125 125 y () n
y
Example 7: Simplify.
25 × ()p − 4 ()3 − 5 × ()10 − 5 × 125
(a) , (p ≠ 0) (b)
5 () − 3 × 10 × ()p − 8 ()5 − 7 × ()6 − 5
24