Page 96 - Start Up Mathematics_8 (Non CCE)
P. 96

2.  Find the area of the rectangles with the following length and breadth respectively:
                                3       4                  2     3             2        1               2  3     2 4
                                   23
                                                                                 2
                                            2
                            (a)   ab ,   ab        (b)  3.2x , 4.1x      (c)  1 xyz,  3 xyz 2      (d)  l m n, 4lm n
                                2       9                                      3        2
                         3.  Multiply:
                                                                          3 3 3 14
                                                 2
                                   2
                                                                                    2 2 2
                                        2
                            (a)  4xy , –3x y and 6x yz            (b)  6  a b c ,   a b c  and –5
                                                                       7         3
                                -8     -3       9            2           6       2 Ê  -1    ˆ
                                                    3
                                    3
                                                                                         2
                            (c)    x ,    x y ,   xyz  and –yz    (d)  5x , (–10xy ),  Á  xy 3 ˜   and –15
                                           4
                                             2
                                15     4       16                                   Ë 25    ¯
                                                                                           2 3
                                                                                    2
                                                    2
                                                                           2
                                            3
                            (e)  0.25x, (–0.1x ),  (2.5x ) and (–1.2x)  (f)  2  1  p q,   -4  pr , 3 1  q r  and –7
                                                                        2       7       4
                         4.  Find the volume of the rectangular boxes whose length, breadth and height are given as follows:
                                           Length                       Breadth                      Height
                            (a)            3.5x y                        1.3x 3                       0.5xy 2
                                               2
                                              2 2
                            (b)            1  p q r                      3  pqr 2                      pqr
                                           2                             4
                            (c)             l m 4                        m n                           l n
                                                                           2 5
                                             3
                                                                                                       6 2
                            (d)            3a b c                       5a b c                       2a b c
                                                                                                       3 5 2
                                                                          4 2 5
                                             2 3 2
                                                               ˆ
                                                2 2
                                                                                      4
                                                                                                2
                                                             3
                         5.  Add the product of 2p q  and  Ê -3  pq  to the product of (–5p q) and (pq ).
                                                       Á
                                                               ˜
                                                               ¯
                                                       Ë 4
                                             Ê 4     ˆ       2     1 2                        Ê 7    2 ˆ    Ê  2  2 2 ˆ
                                                 2
                         6.  From the product of  Á 3 lmn , (–5lmn ) and  l mn, subtract the product of  Á 3 lmn  and  Á Ë  3 lm n .
                                                                                                  3
                                                                                                                2
                                                                                                      ˜
                                                     ˜
                                                                                                                     ˜
                                             Ë
                                                                                              Ë
                                                                                                      ¯
                                                     ¯
                                                                                                                     ¯
                                                                   3
                         7.  Express the following products as monomials and verify the result for x = 2, y = –1 and z = 1.
                                            3
                                                                                     3
                                 2
                                                                           2
                            (a)  (x y) ¥ (–3xy ) ¥  Ê Á Ë 1  yz 2 ˆ     (b)  (2.1x y) ¥ (–3xy ) ¥ (–0.5)
                                                      ˜
                                                      ¯
                                                 6
                                                                        -1
                                 4 3
                                                                                             9
                                           3 5
                            (c)  (y z ) ¥ (–2y z ) ¥ (3yz)        (d)  Ê Á Ë 7  z 2 ˆ ˜ ¯  ¥  Ê 7  z 7 ˆ ˜ ¯   ¥ (8z )
                                                                                 Á
                                                                                 Ë 8
                        8.  Find two monomials with positive integer coefficients, whose product is the given monomial.
                                                                         2
                                                                                             2
                            (a)  3lmn          (b)  7xy            (c)  pq             (d)  2a bc
                         9.  Evaluate the following:
                                   2
                                          2
                                                                                               2
                                                                           2
                                                                                     2
                            (a)  (2a b)(3ab )(0.5ab) for a = –2, b = 1  (b) (–2l ) ¥ (–4lm ) ¥ (–8mn ) for l = 3, m = 2, n = 1.5
                                                                               -16
                                                                                                  ˆ
                                                       2
                                            2 3
                                  6
                                                                                                3
                                                                                        ¥
                            (c)  (5x ) ¥ (–1.5x y ) ¥ (–12xy ) for x = 1, y = 0.5  (d)  Ê Á Ë 15  xyz 2 ˆ Ê -25 xz  for x = 1, y = –4, z = 2
                                                                                                  ˜
                                                                                       ˜ Á
                                                                                                  ¯
                                                                                       ¯ Ë 24
                    Multiplication of a monomial by a binomial
                    You have already learnt that multiplication of literals is distributive over their addition. Thus,
                           x ¥ (y + z) = (x ¥ y) + (x ¥ z)
                    Utilizing this property in multiplication of a monomial and a binomial, we can see that if A, B and C are three
                    monomials, then
                                  A ¥ (B + C) = (A ¥ B) + (A ¥ C) and (B + C) ¥ A = (B ¥ A) + (C ¥ A)
                                  A ¥ (B – C) = (A ¥ B) – (A ¥ C) and (B – C) ¥ A = (B ¥ A) – (C ¥ A)
                     88
   91   92   93   94   95   96   97   98   99   100   101