Page 278 - Start Up Mathematics_8 (Non CCE)
P. 278

Solution:       Area of octagon PQRSTUVW = (Area of trapezium PQRS) + (Area of rectangle PSTW) +
                                    (Area of trapezium WTUV) = 2(Area of trapezium PQRS) + (Area of rectangle PSTW)
                                                                           { 1           }
                                    =                       + (WT × ST) =  2  2 ¥ ( 511+  ) ¥ 4  + (11 × 5)

                                       Ê 1      ˆ
                                    =  2 Á Ë 2 ¥ 16 4¥  ˜  + (11 × 5) = 64 + 55 = 119 m 2
                                                ¯

                                                           MATHS LAB ACTIVITY

                     Objective: To find the area of an irregular polygon by breaking it into triangles and trapeziums
                     Material required: Chart paper, different coloured papers, scale, pencil, a pair of scissors, glue stick/fevicol

                     Step 1:    Draw a line AB of length 30 cm on a white                              N
                                chart paper.
                                                                                    L
                                A              30 cm            B

                     Step 2:.   Take four points on AB, say, P, Q, R and S                      Q             S      B
                                and draw perpendiculars PL, QM, RN and      A       P                  R
                                ST of different lengths.
                     Step 3:    Join AL, LN, NB, AM, MT and TB.                                               T
                     Step 4:    Measure and write the following lengths:                        M
                                AP =  ____ cm       PL = ____ cm                                        N
                                AL =  ____ cm       PR = ____ cm                     L
                                RN =  ____ cm       LN = ____ cm
                                RB =  ____ cm      BN = ____ cm            A                    Q              S      B
                                SB =  ____ cm       ST = ____ cm                     P                  R
                                QS =  ____ cm      TM = ____ cm
                               QM =  ____ cm       AM = ____ cm                                                T
                                AQ =  ____ cm                                                   M
                     Step 5:    Now  using  different  coloured  papers,  cut  out  ∆ ALP,  trapezium  LPRN,  ∆  NRB,  ∆  AQM,
                                trapezium MQST and ∆ TSB.
                     Step 6:    Paste these cut-outs on their respective shapes on the figure.
                     Observations:

                         Area of ∆ ALP                                   = ________________________ cm    2

                         Area of trapezium LPRN                          = ________________________ cm    2

                         Area of ∆ NRB                                   = ________________________ cm    2

                         Area of ∆ AQM                                   = ________________________ cm    2

                         Area of trapezium MQST                          = ________________________ cm    2

                         Area of ∆ TSB                                   = ________________________ cm    2
                         Area of polygon ALNBTM                          Total = ____________________ cm   2


                     Conclusion: Area of any polygon can be found by breaking it into triangles and trapeziums.


                     270
   273   274   275   276   277   278   279   280   281   282   283