Page 276 - Start Up Mathematics_8 (Non CCE)
P. 276

6.  Find the area of the given figure.                                         4 cm
                                                                                 20 cm            5 cm                 20 cm

                                                                                                 16 cm
                         7.  The ratio of the lengths of parallel sides of a
                           trapezium is 3 : 5. The distance between them is                      30 cm
                                                                     2
                           12 cm. If the area of the trapezium is 720 cm ,                    Y     10 cm     X
                           find the lengths of the parallel sides.
                                                                                                7 cm
                                                                                                    12 cm
                                                                                          T                   5 cm  U
                         8.  Find the area of the given figure.
                                                                                                     8 cm
                                                                                              S               R
                                                                                                                5 cm
                                                                                              P               Q


                    Area of a Polygon
                    Area of a regular or irregular polygon can be found by using the formulae for finding the areas of a triangle,
                    parallelogram and trapezium. The idea is to divide the given polygon into non-overlapping rectilinear plane
                    figures whose areas can be found easily. The area of the polygon will be equal to the sum of the areas of the
                    non-overlapping parts.
                    Example 17:     Find the area of a quadrilateral SING in which diagonal SN = 15 cm and the lengths of the
                                    perpendiculars from G and I on SN are 3 cm and 5 cm respectively.
                                                                                                                      N
                    Solution:       GH ^ SN and IJ ^ SN                                    G
                                    GH = 3 cm, IJ = 5 cm                                         3 cm    J
                                    SN = 15 cm                                                      H  15 cm  5 cm
                                                                1
                                    Area of quadrilateral SINK =    × SN × (GH + IJ)          S
                                                                2                                               I
                                                                1                      1
                                                                                   2
                                                                                                     2
                                                              =    × 15 × (3 + 5) cm  =    × 15 × 8 cm  = 60 cm 2
                                                                2                      2
                                                                                                             R
                    Example 18:     Find the area of hexagon STRAIN, if SA = 10 cm,         T
                                    SL = 8 cm, SP = 7 cm, SM = 5 cm, SU = 3 cm,
                                    TU = 4 cm, RP = 6 cm, LI = 3 cm and MN = 5 cm.           4 cm             6 cm

                    Solution:       Area  of  hexagon  STRAIN  =  (Area  of  D  SUT)    S  3 cm U  M         P  L 3 cm  A
                                    + (Area of trapezium TUPR) + (Area of D RPA)
                                    + (Area of D SMN) + (Area of trapezium MNIL)                    5 cm        I
                                    + (Area of D ILA)                                              N

                                      =





                                      Ê 1          ˜ { 1                       } {  1                }
                                                   ˆ
                                              ¥
                                      =  Á 2  ¥SU TU ¯  +  2  ¥ TU RP(  +  ) ¥ SP SU(  -  )  +  2  ¥ RP ¥ SA SP(  -  )
                                      Ë
                                       Ê 1           ˜ {  1                       } {  1               }
                                                     ˆ
                                                ¥
                                                                                              -
                                                                                          (
                                        + Á  ¥SM MN  ¯  +  2  ¥ MN LI(  +  ) ¥ SL SM(  -  )  ¥  2  ¥ SA SL) ¥ LI
                                       Ë 2
                     268
   271   272   273   274   275   276   277   278   279   280   281