Page 296 - Start Up Mathematics_6
P. 296

1.  1                                               6.                           HCF ×   Product of
              2.  All composite numbers, i.e., 4, 6, 8, 9, ... upto 25 have   Numbers HCF  LCM  LCM    numbers
               more than two jumpers landing.
              3.  All prime numbers have only two jumpers landing.  (a)  12, 18  6     36      216       216
              4.  24     5.  (a) 6   (b)  1      (c)  4           (b)  15, 20    5     60      300       300
                                                                  (c)  98, 124   2    6,076   12,152    12,152
                             Review Exercises
            Multiple Choice Questions                           HCF × LCM = Product of the two numbers.
              1.  c      2.  a      3.  a      4.  c      5.  b      6.  b  Values and Life Skills

            Solve Mentally                                        12,240 cm
            True or False                                       Exemplar Problems
              1.  False   2.  True    3.  False   4.  False       1.  a      2.  c     3.  d    4.  c    5.  True
              5.  True   6.  True     7.  False                   6.  False   7.  True   8.  60 L
            Fill in the Blanks                                    9.  Brand A : 35 packets  Brand B : 28 packets
              1.  abundant  2.  19    3.  8    4.  4    5.  symmetric      Brand C : 20 packets
            Answer in One Word or a Line                                           Chapter 4
              1.  7, 14, 21     2. 1   3.  3
              4.  No, 8 and 9 are coprime but none of them is prime; Yes  Exercise 4.1
              5.  ab                                              1.  Open figures—(iii), (iv);  Closed figures—(i), (ii), (v)
              6.  LCM > HCF, as multiples are always greater than factors.    2.  (a) True  (b)  True  (c)  False  (d)  False  (e)  False

            Let’s Evaluate                                          (f) False  (g)  False  (h)  True   (i)  False
              1.  (a)  3 + 17 + 23   (b)     13 + 17 + 31           (j) False  (k)  True
                   or  7 + 13 + 23       or 11 + 13 + 37          3.  (a) 10    (b)  4     (c)  4
                (c) 11 + 31 + 41                                    (d) Lines: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE
                     or  23 + 29 + 31    (Note: Answers can vary)    4.  1, 3   5.  k, l, m and n are also concurrent.
              2.  (a), (c)     3. 999; 3  × 37                  Exercise 4.2
                                   3
              4.  No, not necessarily, for example, 2 + 5 = 7, which is odd.    1.  (a) False  (b)  True  (c)  False  (d)  False (e)  True
              5.
                                                                  2.  14 cm
                                    Divisible by
             Number                                               3.            T      (a)  Exterior: P, Q
                        2   3   4   5   6   8    9   10  11         P     R
             5,444     Y   N    Y   N   N   N   N    N   N             Q  S           (b)  Interior: R, S
             67,859    N   N    N   N   N   N   N    N   Y                             (c)  On the circle: T, U
             5,64,382  Y   N    N   N   N   N   N    N   N                      U
             9,00,001  N   N    N   N   N   N   N    N   N        4.  (a) Infinite  (b)  Infinite   (c)  One
             8,01,020  Y   N    Y   Y   N   N   N    Y   Y        5.                  (a)  O          (b)  OR
             8,43,264  Y    Y   Y   N   Y   Y    Y   N   N                            (c)  PQ         (d)  POR

              6.  30           7.  1,00,200                                           (e)  semicircle PRQ  (f)  PR
            Thinking Skills

              1.  No, the number 20 is divisible by 2 and 4, but it is not     6.             BD lies in the interior and
               divisible by 8.                                                             AC lies in its exterior.

              2.  1 and 4    3. 129
              4.   4  = 2   ∴ factors are 1, 2, 2 , 2 , 2 , ... 2 10
                                          2
                                             3
                   5
                      10
                                               4
              5.  In any three consecutive numbers, you will always have         Review Exercises
               a multiple of two and three each. Therefore, product of   Multiple Choice Questions
               any three consecutive numbers is always divisible by 6.    1.  c   2.  a   3.  d   4.  a   5.  c   6.  c
             288
   291   292   293   294   295   296   297   298   299   300   301