Page 231 - ICSE Math 8
P. 231

Area of a Polygon

                    Area of a regular or irregular polygon can be found by using the formulae for finding the areas of a triangle,
                    parallelogram and trapezium. The idea is to divide the given polygon into non-overlapping rectilinear plane
                    figures whose areas can be found easily. The area of the polygon will be equal to the sum of the areas of the
                    non-overlapping parts.
                                                                                                            R
                    Example 15:  Find the area of hexagon STRAIN, if SA = 10 cm,
                                  SL = 8 cm, SP = 7 cm, SM = 5 cm, SU = 3 cm,              T
                                  TU = 4 cm, RP = 6 cm, LI = 3 cm and MN =                                   6 cm
                                  5 cm.                                                      4 cm  M           L

                    Solution:     Area  of  hexagon  STRAIN  =  (Area  of  DSUT)     S  3 cm U              P   3 cm   A
                                  + (Area of trapezium TUPR) + (Area of DRPA)                      5 cm
                                  + (Area of DSMN) + (Area of trapezium MNIL)                                  I
                                  + (Area of DILA)                                                N


                                  =






                                    Ê 1      ˜ {  1                } { 1                Ê  1     ˆ
                                             ˆ
                                                                -
                                                                                 -
                                  =   Á 2  ¥¥  ¯  2  ¥ ( 46 ¥) ( 73 ¥)  2  ¥ 6 ¥ ( 107 +) } Á Ë  2  ¥ 55¥  ˜ ¯
                                         34 +
                                                       +
                                    Ë
                                      { 1               } { 1            }
                                    +  2  ¥ 53(  + ) ¥ 85(  - )  ¥  2  ¥ 10 8(  - ) ¥ 3
                                    Ê 1      ˆ Ê  1        ˆ Ê 1       ˆ  Ê 1      ˆ   Ê 1      ˆ  Ê 1      ˆ
                                                                                                        23
                                                            +
                                  =     Á 2  ¥¥  ˜ Á 2  ¥ 10 4¥  ˜ Á  2  ¥ 63¥  ˜ ¯  +  Á 2  ¥ 55¥  ˜ ¯  + Á 2  ¥ 8 ¥ 33 +  Á Ë  2  ¥ ¥  ˜ ¯
                                         34 +
                                                                                                ˜
                                             ¯ Ë
                                                           ¯ Ë
                                                                                       Ë
                                                                                                ¯
                                                                          Ë
                                    Ë
                                  = 6 + 20 + 9 + 12.5 + 12 + 3 = 62.5 cm 2
                                                                      2
                                  \ Area of hexagon STRAIN = 62.5 cm .                              Q         R
                    Example 16:  Top surface of a raised platform is in the shape of a regular     L                 S
                                  octagon. Find the area of the octagonal surface.           P       4 m
                                                                                                      11 m
                    Solution:     Area of octagon PQRSTUVW = (Area of trapezium PQRS)                                5 m
                                  + (Area of rectangle PSTW) + (Area of trapezium WTUV) =   W                        T
                                  2(Area of trapezium PQRS) + (Area of rectangle PSTW)
                                                                          { 1           }           V         U
                                  =                        + (WT × ST) =  2  2 ¥ ( 511+  ) ¥ 4  + (11 × 5)
                                     Ê 1      ˆ
                                  =     2 Á Ë 2 ¥ 16 4¥  ˜  + (11 × 5) = 64 + 55 = 119 m 2
                                              ¯

                                                             EXERCISE 21.4

                      1.  Find the area of the quadrilateral MARK.       M


                                                            K          13 cm       A14 cm



                                                                         R

                                                                                                                        219
   226   227   228   229   230   231   232   233   234   235   236