Page 167 - ICSE Math 8
P. 167

Ê    2 -  xˆ                                Ê  2 - ˆ x
                                  fi 12x – 3 x -  6  ˜ ¯   = 4(2x + 8) – 36  fi 12x – 3x + 3 Á Ë  6 ¯ ˜   = 8x + 32 – 36
                                            Á
                                            Ë
                                                                      -
                                          2 − x               Ê     2 xˆ
                                  fi 9x +       = 8x – 4  fi 2 9x +      ˜  = 2(8x – 4)      (Multiplying both sides by 2)
                                                              Á
                                            2                 Ë       2  ¯
                                  fi 18x + 2 – x = 16x – 8
                                  fi 17x + 2 = 16x – 8  fi 17x – 16x = –8 – 2      (Transposing 16x to LHS and 2 to RHS)
                                  fi x = –10
                    Example 6:    Solve 0.25(4f – 3) = 0.05(10f – 9) and check the solution.

                    Solution:     0.25(4f – 3) = 0.05(10f – 9)  fi 0.25 × 4f – 0.25 × 3 = 0.05 × 10f – 0.05 × 9
                                  fi 1.0f – 0.75 = 0.5f – 0.45  fi f – 0.75 = 0.5f – 0.45
                                  fi f – 0.5f = –0.45 + 0.75                   (Transposing 0.5f to LHS and –0.75 to RHS)
                                                     05. f  030.   03.
                                  fi 0.5f = 0.30  fi   05.  =  05.  =  05.                    (Dividing both sides by 0.5)

                                         3
                                  fi	f =   = 0.6
                                         5


                                                             EXERCISE 15.2

                    Solve the following equations using transposition method and check the solution.
                             x - 4  x - 3  1          3x - 2     2   2x + 3
                        (a)       -      =       (b)        +=     -            (c)  15(x – 4) – 2(x – 9) + 5(x + 6) = 0
                                                              x
                               2      4    6            4        3      3
                             2        3               x               (.    x)
                                                                       05 +
                                                                                          2
                                                                                                    2
                        (d)    x +=    ( x + 1)  (e)    + 15 -.  012.  x =       (f)  (x + 4)  + (x – 4)  = 2x(x – 5) + 8
                                  1
                             3        4               3                   2
                             5x -  2  1 Ê    2 x- ˆ  12
                                                                                                                   2
                                                                                                             2
                                                                                        2
                        (g)        -   Á 3x -    ˜  =             (h)  {(3x + 5) + (x + 2)}  + {(3x + 5) – (x + 2)}  = 20x  – 78
                               4     5 Ë      6 ¯    5
                                                                             +
                                                                          Ê 82  xˆ      x   Ê 2 -  xˆ
                        (i)  (x – 2)(x + 5) + 12 = (x + 3)(x – 4) – 2  (j)  x - Á Ë  3  ˜ ¯  +=3  4  - Á  ˜
                                                                                                  ¯
                                                                                            Ë 24
                    Solving Equations Reducible to the Linear Form (Cross-Multiplication Method)
                                                       px +  q  l
                    Let there be an equation in the form     =   .
                                                       rx t+   m
                    First convert the equation to linear form by the method of cross-multiplication and then find the solution by
                    transposition.
                        px +  q     l
                                =        fi   m(px + q) = l(rx + t)
                         rx t+      m
                                         2x - 1  4
                    Example 7:    Solve:       =
                                         5x - 3  3
                                   2x - 1  4
                    Solution:            =                                                               (Cross-multiply)
                                   5x - 3  3
                                  fi 3(2x –1) = 4(5x – 3)  fi 6x – 3 = 20x – 12
                                  fi 6x – 20x = –12 + 3                           (Transposing 20x to LHS and –3 to RHS)
                                  fi –14x = –9  fi  14x = 9
                                     14x    9           9
                                  fi     =      fi x =     is the required solution.           (Dividing both sides by 14)
                                      14   14          14

                                                                                                                        155
   162   163   164   165   166   167   168   169   170   171   172