Page 242 - Start Up Mathematics_7
P. 242

1
                          (c)  area =   × 80 × 31.4 = 1,256 mm    2
                                      2

                               1                             341
                          (d)   × b × 15.5 = 170.5 ⇒ b =          = 22 cm
                               2                             15.5
            Example 12: PQRS is a parallelogram. QM is the height from
                          Q to SR and QN is the height from Q to PS. If       P                       Q
                          SR = 14 cm and QM = 6.4 cm, find:
                          (a)  the area of parallelogram PQRS                                         6.4 cm
                          (b)  QN, if PS = 8 cm                                     N

            Solution:     (a)  Area of parallelogram PQRS = base × height               S            M         R
                                                             = 14 × 6.4 = 89.6 cm  2
                                                                        2
                          (b)   Area of parallelogram PQRS = 89.6 cm
                                               base × height = 89.6 cm    2                    (   base = 8 cm)
                                                             89.6
                              ⇒ 8 × QN = 89.6 ⇒ QN =               = 11.2 cm             D                    C
                                                              8
            Example 13: DL and BM are the heights on sides AB and AD                M

                          respectively of parallelogram ABCD. If the area
                                                           2
                          of the parallelogram is 300 cm , AB = 30 cm
                          and AD = 15 cm, find the length of the two           A         L            B
                          altitudes BM and DL.

            Solution:       Area of parallelogram ABCD = base × height = AB × DL
                                                       300 = 30 × DL

                                                    ∴ DL =    300   = 10 cm
                                                               30
                            Area of parallelogram ABCD = base × height = AD × BM
                                                       300 = 15 × BM
                                                              300
                                                    ∴ BM =        = 20 cm
                                                              15
            Example 14: ∆ DEF is right-angled at D. DG is perpendi cular to EF. If DE = 8 cm, EF = 10 cm
                          and DF = 6 cm, find the area of ∆ DEF. Also find the altitude DG.
                                                                                                  D
            Solution:     In right-angled ∆ DEF, let DE be the base and DF its
                          corresponding altitude.
                                                  1                                       8 cm           6 cm
                            ∴ Area of ∆ DEF =   × DE × DF
                                                  2
                                                  1
                                                =   × 8 × 6 = 24 cm  2            E               G           F
                                                  2                                             10 cm
                                                  1
                               Area of ∆ DEF =   × EF × DG                          (Base = EF, altitude = DG)
                                                  2
                                                  1
                                         ⇒ 24 =   × 10 × DG
                                                  2
                                                  24 × 2    48
                                        ∴ DG =      10    =  10  = 4.8 cm


             234
   237   238   239   240   241   242   243   244   245   246   247